四川青木制药有限公司实验室 及环保设施技改项目 竣工环境保护验收监测表

四川九诚检测技术有限公司 2021 年 7 月

建设单位法人代表: 袁明旭

编制单位法人代表: 陈冲

项目负责人: 陈文娟

项目编写人: 唐灿

建设单位: 四川青木制药有限公司

电话: 028-38591061

传真: 028-38591079

邮编: 620000

地址: 眉山市东坡区眉山市经济开发区东区顺江大道南段 55 号

编制单位: 四川九诚检测技术有限公司

电话: 028-87862858

传真: 028-87862858

邮编: 611731

地址: 四川·成都·犀浦·泰山南街 186 号

目录

表一 项目基本情况

表二 主要工艺流程及污染物产污环节

表三 主要污染物产生与治理措施

表四 环评结论及环评批复

表五 监测标准及监测内容

表六 监测结果

表七 环境管理检查结果

表八 结论与建议

附图

附图 1: 项目地理位置图

附图 2: 项目平面布置图

附图 3: 项目外环境关系图

附图 4: 现场采样图

附件

附件1: 备案表;

附件2: 环评批复;

附件 3: 营业执照

附件 4: 验收委托书

附件 5: 工况证明

附件 6: 一般固废处理协议

附件7:一般固废处理资质

附件8: 危废协议

附件9: 危废资质

附件 10: 公众意见调查表

附件 11: 公众参与承诺函

附件12:排污许可证

附件13:环保管理制度

附件14: 污泥承诺书

附件 15: 监测报告

表一 项目基本情况

项目名称	四川青木制药有限公司实验室及环保设施技改项目						
建设单位	四川青木制药有限公司						
法人代表	袁明	明旭	联系	人		奚正良	
通讯地址	眉山市东坡区经济开发区东区顺江大道南段 55 号					5 号	
联系电话	15108270885 邮政编码 620			620000			
建设地点	眉	山市东坡区组	&济开发区东 	区顺江大道	南段 55	5 号	
立项审批部门		区经济和信化局	批准文号	_		备 27-03-4348 046 号	
环评审批部门	眉山市东坡	生态环境局	批准文号	眉东环颈	≢函【2	020】45 号	
建设性质	新建口 技术词	扩建☑	行业类别 及代码	M7340 图	M7340 医学研究和试验发展		
建筑面积(平 方米)	71200m ² ,	与地面积 其中本项目 识 3700㎡	绿化面积 (平方米)		/		
总投资(万元)	800	其中: 环保 投资(万 元)	620	环保投资资比		77.5%	
实际总投资 (万元)	800	实际环保 投资 (万元)	620	环保投资资比价		77. 5%	
	,_,,,,		日关法律、法 計 和国环境保护			月1日起施	
验收监测依据							
	(4)	《中华人民共	和国环境噪声	污染防治污	长》, 20	18 年 12 月	

29 日;

- (5)《中华人民共和国固体废物污染环境防治法》,2020 年 4 月 29 日第十三届全国人民代表大会常务委员会第十七次会议第二次修订。自 2020 年 9 月 1 日起施行;
- (6)《建设项目环境保护管理条例》,国务院第 682 号令,2017 年 10 月 1 日;
- (7) 《关于规范建设单位自主开展建设项目竣工环境保护验收的通知(征求意见稿)》,环办环评函【2017】1235 号,2017 年 10月 13日;
- (8)《建设项目竣工环境保护验收暂行办法》,国环规环评【2017】 4号,2017年11月22日;
- (9) 关于印发〈污染影响类建设项目重大变动清单(试行)〉的通知(环办环评函(2020)688 号。
- 2.2 建设项目竣工环境保护验收技术规范
- (1)《建设项目竣工环境保护验收技术指南 污染影响类》,环办环评函【2018】9 号,2018 年 5 月 15 日:
- (2)《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》,环办【2015】113 号,2015 年 12 月 30 日;
- (3)《建设项目"三同时"监督检查和竣工环保验收管理规程(试行)》,环发【2009】150号,2009年12月17日。
- 2.3 建设项目环境影响报告表及审批部门审批决定
- (1)《四川青木制药有限公司实验室及环保设施技改项目环境 影响报告表》,四川嘉盛裕环保技术有限公司:
- (2)《四川青木制药有限公司实验室及环保设施技改项目环境 影响报告表的审批意见》,眉东环建函【2020】45号;2020年7月 1日;
- 2.4 其他相关文件
 - (1) 《检测技术服务有限公司验收检测报告》
 - (2) 排污许可证,编号:91511402572797385X001P:

- (3) 四川青木制药有限公司提供的其他有关技术资料及文件;
- (4) 验收监测委托书。
- 1. 噪声排放标准: 运营期执行《工业企业厂界环境噪声排放标准》 (GB12348-2008); 施工期噪声执行《建筑施工场界环境噪声排放标准》(GB12523-2011)。
- 2. 本项目工艺废气执行《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017);《大气污染物综合排放标准》(GB16297-1996);《挥发性有机物无组织排放控制标准》(GB37822-2019);《制药工业大气污染物排放标准》(GB37823-2019);锅炉废气执行《锅炉大气污染物排放标准》(GB13271-2014);

验收执行标准、标号、级别

项目工艺废气结合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)、《大气污染物综合排放标准》(GB16297-1996)、《制药工业大气污染物排放标准》(GB 37823-2019)按最小限值执行。

- 3. 废水排放标准:《化学合成类制药工业水污染物排放标准》 (GB21904-2008)《污水综合排放标准》(GB8978-1996);《四川 省水污染物排放标准》(DB51/190-93)》级标准
- 4. 固废标准:一般工业固废及生活垃圾执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单中的要求。危险废物执行《危险废物贮存污染控制标准》(2013年修订)及其修改单中的要求。

建设项目基本情况:

一、项目基本情况

四川青木制药有限公司成立于 2011 年 5 月,位于眉山市东坡区眉山市经济开发区东区顺江大道南段 55 号,注册资金 8000 万元,是成都苑东生物制药股份有限公司的全资子公司。主要从事化学原料药和医药中间体、化药制剂的生产和经营,为国际、国内客户提供优质产品和服务。根据该公司发展需求,四川青木制药有限公司拟投资 800 万元建设"四川青木制药有限公司实验室及环保设施技改项目"。

本项目建设内容为:①对制剂车间 1F 西侧空置车间进行改造(改造面积700m²),新建实验线及相关辅助设施;②在厂区预留用地内新建污水处理站 1 座(处理能力 300m³/d),新建废水处理站建成后,将废水引至新建污水处理站处理,同时改造老的污水站,改造完成后两个污水站交替运行;③在厂区预留用地内新建约1500m²的甲类库房(含危废暂存)1座,新建甲类库房本项目仅用于堆放危险废物(危废暂存间面积为 630m²)其余部分(870m²)仅进行厂房建设,不堆放危险化学品,后期如需堆放危险化学品将另行环评。

2021年5月,四川青木制药有限公司委托四川九诚检测技术有限公司开展该项目的竣工环境保护验收监测工作。我公司在接受委托后,有关技术人员于2021年5月进行了现场踏勘,根据项目相关标准要求,我公司于2021年5月20日-2021年5月22日,2021年5月24日-2021年5月25日对本项目进行验收监测及现场调查工作,根据现场监测结果和环境管理情况,并参考建设单位提供的有关资料,编制了《四川青木制药有限公司实验室及环保设施技改项目竣工环境保护验收监测表》。

二、验收监测范围及内容

(一) 验收监测范围

验收监测范围为本项目主体工程、辅助工程、仓储及其他工程、办公及生活设施、公用工程、环保工程。

(二)验收监测内容

- (1) 废水污染物排放浓度监测;
- (2) 废气污染物排放浓度监测;
- (3) 工业企业厂界环境噪声监测;
- (4) 固体废弃物处置情况检查;

- (5) 总量控制检查:
- (6) 公众意见调查;
- (7) 环境管理检查。

三、项目概括

(一) 工程地理位置及外环境关系

本项目位于眉山市东坡区眉山市经济开发区东区顺江大道南段 55 号四川青木制药有限公司现有厂区内,与园区主干道顺江大道相邻,可通过成雅高速公路与各工业区、物流基地便捷地进行联系。园区内道路、水、电、气等基础设施完备,项目具备较好的建设环境。

根据现场踏勘,项目厂区北侧紧邻四川海思科制药有限公司眉山分公司(化学原料药生产);项目厂区东北侧 38~400m 范围内分布有永江村居民约 89 户;项目厂区东南面 85~300m 范围内分布有永江村居民约 35 户(厂区污水处理站边界与东南面最近居民距离为 101.83m,测绘结果见附件);项目厂区南侧紧邻四川省绿贝尔精细化工科技有限公司(游离甲醛交联剂、催化剂生产)、四川省集坤特种设备有限公司(人防防护设备生产);项目厂区西面紧邻顺江大道,西面 90m 处为砂石厂,西面 520m 处为岷江;项目厂区西北面 100m 处为四川致味食品有限公司(蔬菜系列腌制食品生产,其腌制池距离本项目厂界 220m,且未提出划定大气防护距离及卫生防护距离的要求)。项目所在区周围评价范围内无自然保护区、文物古迹、风景名胜区、饮用水源保护区等特定的环境敏感目标。厂区总占地面积 71200m²,其中本项目占地面积 3700m²。项目地理位置图,总平面示意图,外环境关系图见附图。

(二) 本项目建设内容

项目名称: 四川青木制药有限公司实验室及环保设施技改项目

建设地点:四川省眉山市东坡区;

建设单位:四川青木制药有限公司;

建设性质: 改扩建;

项目投资:800万元;

建筑面积: 3700 平方米;

项目环评建设内容与实际建设内容见表 1-1

表 1-1 项目建设内容与环评内容对照表

类	否日力场	75 II 44 miles	实际建设内	主要环境
別	项目名称 	· 项目内容	容及规模	问题
主体工程	原料药生产区	位于制剂车间 1F 西侧部分区域(制剂车间共3F,H=20.3 m,钢架结构),改造建筑面积700 m²。 主要安装反应釜、离心机、冷凝器等设备实验的原料药为甲磺酸乐伐替尼、达克替尼、盐酸尼卡地平、酒石酸去甲肾上腺素,4种原料药为交替实验。	=20.3 m, 钢架结构),改造建筑面积700 m ² 。 要安装反应釜、离心机、冷凝器等设备 的原料药为甲磺酸乐伐替尼、达克替尼、盐 卡地平、酒石酸去甲肾上腺素,4种原料药	
	溶媒回收系统	设有 1 座精馏塔及配套管网、冷凝器等,对有机溶剂进行溶剂精馏处理, 单个精馏塔处理量为800kg/h。按溶剂种类,分类、分品种回收	一致	废气、环境 风险
	质检用房 (质检楼 F)	位于质检楼第五层,主要为功能为原辅料、包材、 产品的合格性检验	一致	废水、固废
<i>t</i> .P.	纯化水站	位于制剂车间 3F,处理规模 2m³/h,二 级反渗透除盐	一致	噪声、废水
辅助助	空压机房	提供仪表用压缩空气	一致	噪声
助 工	锅炉房	1 台 4t/h 燃气锅炉	一致	废气、废水
	冷冻站	位于工程楼一楼,为-20℃乙二醇冷冻系统	一致	噪声
	中央空调 及空气净 化系统	实验车间分为一般区和洁净区。洁净区设置空气净化系统,一般区设置水冷式中央空调系统。其中洁净空调系统空气经过初、中、高效三级过滤后送入室	一致	噪声、废气
	循 冷却水系 统	为中央空调系统供给冷却水,由循环冷却水泵、 闭式冷却塔、循环管路组成,循环冷却水量为 70m³/h;设 1 座 200m³ 循环水池	一致	废水、噪声
公用	供电	共用现有厂区一座 10kV/0.4kV 高低压变配电室 配置的 1 台 1250kVA 干式变压器	一致	/

工	供水	DN200,园区供水管网供应	一致	
 程 	消防水系统	由消防给水管网供水	一致	
	供气	配套建设的园区管网供给	一致	
		厂区排水采用雨污分流,厂区雨排水直接排至厂		
		区外管网。污水管架空铺设,车间先各自集中到		
	排水	污水收集池,通过污	一致	
		泵统一输送到厂区污水处理站处理达标后排入园		
		区污水管网		
办	办公用房	质检楼共 5F, 总建筑面积 3208.52m², 1-4F 主	一致	生活垃圾、
公	外公用房	要为厂区办公用房	一致	生活污水、
及				生活垃圾、
生	食堂	3F, 面积 1911.08m², 主要为员工提供餐饮服务	一致	生活污水、
活				食堂油烟
设	 倒班宿舍	 6F,面积 4297.25m²,主要为员工倒班提供住宿	一致	生活污水、
施	四列 日	01,面似 4201.2011,工女为火工团组建队任相	玖	生活垃圾
		现有 10 个立式罐,30m³ 甲醇罐 1 个, 30m³ 乙		
		酸乙酯罐 1 个,30m3 无水乙醇罐 2 个,20m3 冰		 废气、环境
	罐区	醋酸罐 1 个,40m³ 甲醇罐 1 个,50m³ 乙醇罐 2	一致	风险
		个,50m3 乙酸乙酯罐 1 个,50m3 储罐 1 个(备		/ VI = 2
仓		用),罐区设有集液坑及 0.5m 高围堰		
储	综合仓库	建筑面积 4640m², 3F, 钢结构。储存一般物料及	一致	/
及		产品		,
其	甲类库房	建筑面积 1556m²,1F,钢结构。储存危化品	一致	废气、环境
他		7.		风险
		新建 1 座甲类库房,建筑面积 1500m², 1F,钢		
	甲类库房	结构。新建甲类库房本项目仅用于堆放危险废物	一致	废气、环境
		(危废暂存间面积为 630m²),其余部分(870m²)		风险
		仅进行厂房建设,不堆放危险化学品,后期如需		

		堆放危险化学品,将另行环评		
		生活污水经预处理池处理后进入厂区污水处理站 综合调节池	一致	污泥
	废水处理	现有 1 座污水处理站,采用"多维电解+气浮+水解酸化+厌氧处理+CASS" 工艺,处理能力 300m³/d	一致	恶臭、污 泥、噪声
		在现有污水处理站西侧新建 1 座污水处理站,采 用"芬顿预处理+调节池+气浮+水解酸化池 +UASB+A/0+混凝沉淀"工艺,处理能力 300m³/d	一致	恶臭、污 泥、噪声
		制剂车间工艺废气处理: 依托现有 1 套碱水喷淋 塔+石蜡油吸收塔处理后,并入车间跑冒滴漏废气 处理装置(即 1 套水喷淋塔+石蜡油吸收塔+活性 炭吸附塔+25m 高排气筒 DA004)处理后排放	一致	废水、固废、噪声
环 保 工	废气治理	车间跑冒滴漏废气处理: 依托现有 1 套碱水喷淋 塔+石蜡油吸收塔+活性炭吸附塔+25m 高排气筒 (DA004) 处理后排放	一致	废水、固 废、噪声
程		罐区、甲类库房、污水处理站废气处理: 依托现有 1 套碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔+15m 高排气筒(DA003)处理后排放	一致	废水、固废、噪声
		燃气锅炉天然气燃烧废气通过 1 根 15m 排气筒 (DA002) 排放	一致	噪声
	噪声治理	通过选用低噪声设备、安装减震垫、合理安排生 产时间。	一致	/
		厂区东北侧设置一般固废暂存间,占地面积 640m²,用于暂存一般固废	一致	/
	固废治理	新建危废暂存间,位于新建甲类库房内,占地面积 630 m²,用于暂存危险废物(实验工艺固废、质检室废液、废试剂、废气处理装置废吸收剂、废吸附剂活性炭、空气净化系统废滤材、废包装	一致	环境风险

		材料、报废药品、废机油和废含油抹布等)。		
	事故应急	位于现有污水处理站旁,钢筋混凝土结构,容积	一致	広→レ
	池	$300\mathrm{m}^3$	一致	废水

(三) 原辅材料及能耗

本项目原辅材料及能耗见表 1-2。

表 1-2 主要原辅材料情况表

实验原	序号	原辅料名称	年消耗量	实际年	储存方	储存位置
料药			kg	消耗	式	
	1 4-氨基-3-氯苯酚盐酸盐 2 氯甲酸-2, 2, 2-三氯乙酯		180	一致	袋装	综合库房
			234	一致	桶装	甲类库
	3	N, N-二异丙基乙胺	260	一致	桶装	甲类库
	4	N, N-二甲基乙酰胺	360	一致	桶装	甲类库
	5	环丙胺	258	一致	桶装	甲类库
	6	乙酸乙酯	149	一致	罐装	储罐区
	7	盐酸	402	一致	桶装	甲类库
	8	氯化钠	306	一致	袋装	综合库房
	9	4-氯-7-甲氧基喹	128	一致	袋装	综合库房
甲磺酸		5-啉-6-酰				
乐伐替	10	碳酸铯	240	一致	袋装	综合库房
尼	11	铜粉	4	一致	袋装	综合库房
	12	碘化亚铜	10	一致	袋装	综合库房
	13	二甲亚砜	274	一致	桶装	甲类库
	14	丙酮	187	一致	罐装	储罐区
	15	氨水	77	一致	桶装	甲类库
	16	活性炭	20	一致	袋装	综合库房
	17	甲醇	88	一致	罐装	储罐区
	18	乙腈	77	一致	桶装	甲类库
	19	甲磺酸	26	一致	桶装	甲类库
	20	四氢呋喃	28	一致	桶装	甲类库

	21	乙酸异丙酯	61	一致	桶装	甲类库
	1	7-氟-6-硝基-4-喹唑啉酮	425	一致	袋装	综合库房
		(SM1)				
	2	3-氯-4-氟苯胺(SM2)	330	一致	袋装	综合库房
	3	(2E)-4-(1-哌啶基)-2-	435	一致	袋装	综合库房
		丁烯酸盐酸盐(SM3)				
	4	氯化亚砜	65	一致	桶装	甲类库
	5	N, N-二甲基甲酰胺	45	一致	桶装	甲类库
	6	正庚烷	504	一致	桶装	甲类库
	7	乙腈	196	一致	桶装	甲类库
사료	8	碳氢钠	500	一致	袋装	综合库房
达可 替尼	9	甲醇钠	300	一致	袋装	综合库房
省化	10	甲醇	5000	一致	罐装	储罐区
	11	四氢呋喃	327	一致	桶装	甲类库
	12	水合肼	400	一致	桶装	甲类库
	13	活性炭	50	一致	袋装	综合库房
	14	二氧化硅	1000	一致	袋装	综合库房
	15	草酰氯	270	一致	桶装	甲类库
	16	二氯甲烷	252	一致	桶装	甲类库
	17	碳酸钠	1500	一致	袋装	综合库房
	18	N,N-二甲基乙酰胺	5000	一致	桶装	甲类库
	19	乙醇	219	一致	罐装	储罐区
	1	间硝基苯甲醛	340	一致	袋装	综合库房
	2	乙酰乙酸甲酯	287	一致	桶装	甲类库
盐酸尼	3	哌啶	20	一致	桶装	甲类库
上地平	4	乙酸	122	一致	罐装	储罐区
トルロー	5	异丙醇	66	一致	桶装	甲类库
	6	3-氨基-2-丁酸氰乙酯	332	一致	袋装	综合库房
	7	乙醇	76	一致	罐装	储罐区

	8	氢氧化钠	691	一致	袋	综合库房
	9	四氢呋喃	204	一致	桶装	甲类库
	10	盐酸	1152	一致	桶装	甲类库
	11	N-苄基-N-甲基乙醇胺	380	一致	桶装	甲类库
	12	1-(3-二甲胺基丙基)-3-	495	一致	袋装	综合库房
		乙基碳二亚氨盐酸盐				
	13	4-二甲氨基吡啶	347	一致	袋装	综合库房
	14	二氯甲烷	197	一致	桶装	甲类库
	15	碳酸钠	140	一致	袋装	综合库房
	16	丙	134	一致	桶装	甲类库
	17	甲醇	272	一致	罐装	储罐区
	1	邻苯二酚	85	一致	袋装	综合库房
	2	氯乙酰氯	93	一致	桶装	甲类库房
	3	三氯化铝	250	一致	袋装	综合库房
	4	二氯甲烷	60	一致	桶装	甲类库房
	5	盐酸	48	一致	桶装	甲类库房
重酒石	6	乙腈	79	一致	桶装	甲类库房
酸肾上	7	氨水	250	一致	桶装	甲类库房
腺素	8	乙醇	691	一致	罐装	储罐区
	9	钯碳	9. 6	一致	袋装	综合库房
	10	氢气	5	一致	瓶装	氢隔间
	11	R-2-甲氧基苯乙酸	25	一致	袋装	综合库房
	12	甲醇	350	一致	罐装	储罐区
	13	酒石酸	6	一致	袋装	综合库房
	1	水	4414. 1m³	一致	/	园区供水
						管网
能耗	2	电	100 万	一致	/	园区供电
			kw. h			管网
	3	天然气	216 万 m³	一致	/	园区供气

					管网
4	蒸汽	5316t	一致	/	既有蒸汽锅
					炉提供

(四)项目主要设备

项目主要设备见表 1-3。

表 1-3 项目主要设备对照表

序号	生产车间	设备名称	材质	规	环评数量	实际数量
				型号		
1	2 车间	反应釜	搪玻璃	200L	1	1
2	2 车间	反应釜	搪玻璃	500L	1	1
3	2 车间	反应釜	搪玻璃	1000L	1	1
4	2 车间	反应釜	不锈钢	500L	1	1
5	2 车间	离心机	不锈钢	600	1	1
6	2 车间	干燥箱	不锈钢	600L	2	2
7	2 车间	双锥	不锈钢	100L	1	1
8	2 车间	压滤器	不锈钢	_	1	1

(五) 项目劳动定员与生产制度

现有厂区员工和工作制度:现有厂区实际员工人数为200人,年工作300天,采取3班制,每班8小时。

本项目员工和工作制度劳动定员:本项目劳动定员均从现有员工中调配,不新增员工。实验工作制度:本项目实验装置为24小时连续运行,根据本项目实验量,实验装置年运行时间为185d。

(六) 项目变更情况

经对照环评与批复,本项目实际建设与环评及批复基本一致,无重大变更。

表二 主要工艺流程及污染物产污环节

一、主要工艺流程简述

1、甲磺酸乐伐替尼实验工艺流程及产污环节分析:

简述反应原理:以 4-氨基-3-氯苯酚盐酸盐为起始原料,加入氯甲酸-2,2,2-三氯乙酯通过酰胺化反应后,再与环丙胺通过成脲反应得到中间体 I,再与 4-氯-7-甲氧基喹啉-6-酰胺通过取代反应得到中间体 II,再与甲磺酸通过成盐反应得到甲磺酸乐伐替尼。

(1) 主要反应方程式

1) 酰胺化反应:

4-氨基-3-氯苯酚盐酸盐 氯甲酸-2,2,2-三氯乙酯 改眠 反 应 .

N-(2,2,2-三氯乙氧羰基)-2-氯-4-羟基苯胺

成脲反应:

副反应:

中间体 I: (1-(2-氯-4-羟基苯基) -3-环丙基脲

有机溶剂: N,N-二甲基乙酰胺(DMAc)、乙酸乙酯

2) 取代反应

中间体 I: 1-(2-氯-4-羟基苯基) -3-环丙基脲

中间体 II: 4-[3-氯-4-(环丙基氨基羰基)氨基苯氧基]-7-甲氧基-6-喹啉有机溶剂:

二甲亚砜(DMSO)、丙酮、甲醇、乙腈

催化剂: 碘化亚铜(CuI)、铜粉脱色剂: 活性炭

3) 成盐反应

$$H_2N$$
 + MeSO₃H H_2N + MeSO₃H H_2N 中间体II 甲磺酸 FQ 替尼

中间体 II: 4-[3-氯-4-(环丙基氨基羰基)氨基苯氧基]-7-甲氧基-6-喹啉甲磺酸乐伐替尼: 4-[3-氯-4-(环丙基氨基羰基)氨基苯氧基]-7-甲氧基-6-喹啉甲磺酸盐

有机溶剂:二甲亚砜、四氢呋喃、乙酸异丙酯

(2) 工艺流程

1) 中间体 [生产工艺

在反应釜中, 先加入 N, N-二甲基乙酰胺, 再加入 4-氨基-3-氯苯酚盐酸盐。加毕, 控 制体系温度至 10 ℃,搅拌下滴加 N.N-二异丙基乙胺,控制体系温度不超过 20 ℃。加 毕,搅拌降温至 5℃,再滴加氯甲酸-2.2.2-三氯乙酯,并控制体系温度 0-10℃,加毕 后搅拌反应 1h。酰胺化反应完全后,升温至 20° 、加入环丙胺。加毕,升温至 45° 反应 5h, 反应尾气(G1-1)为环丙胺有机废气,进入工艺废气处理装置处理。反应结束,降温至 25℃,加乙酸乙酯稀释体系,再加入配好的 6%盐酸溶液调节 pH 至4-5。pH 调节完毕, 分液,水相用乙酸乙酯萃取三次,分液产生的水相废液(W1-1),主要为N,N-二甲 基乙酰胺、N.N-二异丙基乙胺、环丙胺、三氯乙醇、盐酸、乙酸乙酯、水等,进入污 水处理站处理。合并有机相,分别用 3%盐酸、水和饱和食盐水洗涤。洗涤废水(W1-2), 主要为 N,N-二甲基乙酰胺、N,N-二异丙基乙胺、盐酸、环丙胺、三氯乙醇、氯化钠、水 等,进入污水处理站处理。然后将有机相转至蒸馏釜,减压浓缩,得到混悬液。蒸出的气 体主要为乙酸乙酯,经二级冷凝后回收乙酸乙酯;产生的冷凝废液(S1-1)为乙酸乙酯等 有机物,做危废处理;冷凝不凝气(G1-2)为乙酸乙酯等有机废气,进入工艺废气处 理装置处理。向混悬液中加入乙酸乙酯,25℃打浆。打浆结束后离心,并用乙酸乙酯 洗涤,滤饼备用。离心产生的废液(S1-2)含有较高浓度的有机物(乙酸乙酯、三氯 乙醇等),作为危废处理。将滤饼减压干燥 6h,得中间体 I。干燥废气为乙酸乙酯等有

机废气,先经二级冷凝器冷凝,不凝气(G1-3)进入工艺废气处理装置处理,冷凝废液(S1-3)主要含乙酸乙酯,交由危废资质单位处置。

2) 中间体II生产工艺

在搪玻璃反应釜中加入二甲亚砜、再在搅拌下一次加入中间体 I、碳酸铯(粉碎后)、铜粉、碘化亚铜、4-氯-7-甲氧基喹啉-6-酰胺。加毕,升温至 65℃反应 20h,反应尾气(G1-4)为二甲亚砜有机废气,进入工艺废气处理装置处理。反应完全后,降温至 20℃。向反应釜中滴加入配好的 33.3%(v/v)丙酮-水混合溶液,控温 20℃,搅拌 1h,再加入水,控温 20℃;继续搅拌析晶 16h。析晶结束直接离心产生的废液经二级冷凝后回收丙酮和二甲亚砜;产生的冷凝废水(W1-3)主要为二甲亚砜、丙酮、碳酸铯、碘化亚铜、水等,进入污水处理站处理;冷凝不凝气(G1-5)为二甲亚砜和丙酮等有机废气,进入工艺废气处理装置处理。离心固体加入氨水和水 25℃打浆洗涤 2h,速甩得到固体备用。洗涤离心产生的洗涤废液(W1-4)主要为水、碳酸铯、氨水、铜胺络合物等,进入污水处理站处理。离心固体再用水 25℃打浆洗涤 2h后离心,离心产生的洗涤废液(W1-5)主要为铜胺络合物、水,进入污水处理站处理。离心固体 55℃真空干燥 24h(真空度<0.08MPa),得中间体 II 粗品。干燥废气为水,先经二级冷凝器冷凝,冷凝废水(W1-6)主要含水,进入污水处理站处理。

在搪玻璃反应釜中加入二甲亚砜,搅拌下加入活性炭,升温至 50℃搅拌 1h,反应尾气(G1-6)为二甲亚砜有机废气,进入工艺废气处理装置处理。脱色完毕后,压滤,滤液转入反应釜,搅拌下加入丙酮和甲醇,25℃下析晶 16h。滤渣(S1-4)含有活性炭、铜粉,作为危废处理。析晶结束直接离心并用丙酮淋洗产生的废液经二级冷凝后回收丙酮、甲醇和二甲亚砜;产生的冷凝废液(S1-5)含高浓度的有机物(二甲亚砜、丙酮、甲醇等),做危废处理;冷凝不凝气(G1-7)为二甲亚砜、甲醇和丙酮等有机废气,进入工艺废气处理装置处理。将固体 55℃真空干燥 16h(真空度<0.08MPa)。干燥废气为丙酮、甲醇、二甲亚砜等,经二级冷凝器冷凝,冷凝废液(S1-6)主要含丙酮、甲醇、二甲亚砜,交由危废资质单位处置;冷凝不凝气(G1-8)为二甲亚砜、甲醇和丙酮等有机废气,进入工艺废气处理装置处理。

在搪玻璃反应釜中加入二甲亚砜,搅拌下加入上述固体,升温至 50℃搅拌 1h, 反应尾气(G1-9)为二甲亚砜有机废气,进入工艺废气处理装置处理。固体溶解完毕 后,搅拌下加入丙酮和甲醇,25℃下析晶 16h。析晶结束直接离心并用丙酮淋洗产生 的废液经二级冷凝后回收丙酮、甲醇和二甲亚砜;产生的冷凝废液(S1-7)含高浓度的有机物(二甲亚砜、丙酮、甲醇等),做危废处理;冷凝不凝气(G1-10)为二甲亚砜、甲醇和丙酮等有机废气,进入工艺废气处理装置处理。将固体 55℃真空干燥 16h(真空度<0.08MPa)。干燥废气为丙酮、甲醇等有机废液,经二级冷凝器冷凝,冷凝废液(S1-8)主要含二甲亚砜、丙酮、甲醇,交由危废资质单位处置;冷凝不凝气(G1-11)为二甲亚砜、甲醇和丙酮等有机废气,进入工艺废气处理装置处理。

在搪玻璃反应釜中加入二甲亚砜,搅拌下加入上述固体,升温至 50℃搅拌 1h,反应尾气(G1-12)为二甲亚砜有机废气,进入工艺废气处理装置处理。固体溶解完毕后,搅拌下加入乙腈,25℃下析晶 16h。析晶结束直接离心并用丙酮淋洗产生的废液经二级冷凝后回收丙酮、乙腈和二甲亚砜;产生的冷凝废液(S1-9)含高浓度的有机物(二甲亚砜、丙酮、乙腈等),做危废处理;冷凝不凝气(G1-13)为二甲亚砜、乙腈和丙酮等有机废气,进入工艺废气处理装置处理。将固体 55℃真空干燥 16h(真空度<0.08MPa),得中间体 II 精制品。干燥废气为丙酮、乙腈等有机废液,经二级冷凝器冷凝,冷凝废液(S1-10)主要含丙酮、乙腈、二甲亚砜,交由危废资质单位处置;冷凝不凝气(G1-14)为二甲亚砜、甲醇和丙酮等有机废气,进入工艺废气处理装置处理。

3) 甲磺酸乐伐替尼实验生产工艺

在搪玻璃反应釜中加入二甲亚砜开启搅拌,再加入中间体 II,搅拌形成混悬液,控制体系温度 20℃。然后滴加配好的甲磺酸二甲亚砜溶液,控制温度 20℃,加毕后,搅拌反应 1h。再加入四氢呋喃,加完后观察析晶状态,并于明显析出后继续保温 20℃,搅拌析晶 24h。析晶结束直接压滤并用乙酸异丙酯淋洗,固体备用,产生的废液经二级冷凝后回收四氢呋喃、乙酸异丙酯和二甲亚砜;产生的冷凝废液(S1-11)含高浓度的有机物(二甲亚砜、四氢呋喃、乙酸异丙酯等)和杂质,做危废处理;冷凝不凝气(G1-15)为二甲亚砜、四氢呋喃和乙酸异丙酯等有机废气,进入工艺废气处理装置处理。在搪玻璃反应釜中加入乙酸异丙酯和上述离心固体,升温至 80℃,转晶 8h,反应尾气(G1-16)为乙酸异丙酯有机废气,进入工艺废气处理装置处理。转晶结束后,降温至 25℃,压滤,产生的废液经二级冷凝后回收乙酸异丙酯;产生的冷凝废液(S1-12)含高浓度的有机物乙酸异丙酯等,做危废处理;冷凝不凝气(G1-17)为乙酸异丙酯等有机废气,进入工艺废气处理装置处理。将固体 55℃真空

干燥,得甲磺酸乐伐替尼。干燥废气经二级冷凝器冷凝,冷凝废液(S3-13)主要含乙酸异丙酯,交由危废资质单位处置;冷凝不凝气(G1-18)为乙酸异丙酯等有机废气,进入工艺废气处理装置处理。甲磺酸乐伐替尼实验工艺产污环节见下表 2-1 所示。

表 2-1 甲磺酸乐伐替尼实验工艺产污表(5 批次,用时共91h)

编号	名称	产生位置	污染物种类	产生	土量	处置措	产生规律
無与	石 柳	广土业具	75条物件失	kg/a	kg/批	施	广生观律
G11	反应尾气	成脲反应	环丙胺	40	8		间歇
G1-2	冷凝不凝气	减压浓缩	乙酸乙酯	8	1.6		间歇
G1-3	冷凝不凝气	离心	乙酸乙酯	2	0.4		间歇
G1-4	反应尾气	取代反应	二甲亚砜	18	3. 6		间歇
01.5	VA VET THE E	対し	丙酮	8	1.6		间歇
G1-5	冷凝不凝气	离心	二甲亚砜	14	2.8		间歇
G1-6	反应尾气	脱色反应	二甲亚砜	10	2		间歇
			二甲亚砜	15	3		间歇
G1-7	冷凝不凝气	离心	丙酮	16	3. 2		间歇
			甲醇	13	2.6	进入工	间歇
			二甲亚砜	2	0.4	艺废气	间歇
G1-8	冷凝不凝气	减压干燥	丙酮	3	0.6	处理装	间歇
			甲醇	3	0.6	置处理	间歇
G1-9	反应尾气	溶解	二甲亚砜	17	3. 4		间歇
			二甲亚砜	11	2. 2		间歇
G1-10	冷凝不凝气	离心	丙酮	21	4. 2		间歇
			甲醇	7	1.4		间歇
			二甲亚砜	3	0.6		间歇
G1-11	冷凝不凝气	减压干燥	丙酮	6	1.2		间歇
			甲醇	2	0.4		间歇
G1-12	反应尾气	溶解	二甲亚砜	25	5		间歇
G1-13	冷凝不凝气	离心	二甲亚砜	11	2. 2		间歇

			丙酮	2	0.4		间歇
			乙腈	27	5. 4		间歇
			二甲亚砜	3	0.6		间歇
G1-14	冷凝不凝气	减压干燥	丙酮	1	0. 2		间歇
			乙腈	4	0.8		间歇
			四氢呋喃	10	2		间歇
G1-15	冷凝不凝气	压滤	二甲亚砜	8	1.6		间歇
			乙酸异丙酯	3	0.6		间歇
G1-16	反应尾气	转晶	乙酸异丙酯	13	2.6		间歇
G1-17	冷凝不凝气	压滤	乙酸异丙酯	7	1.4		间歇
G1-18	冷凝不凝气	减压干燥	乙酸异丙酯	3	0.6		间歇
W1-1	分废水	萃取	N, N-二甲基乙 酰胺、N, N-二 异丙基乙胺、 环丙胺、三氯 乙醇、盐酸、 乙酸乙酯、水	2572	514. 4		间歇
W1-2	洗废水	有机相洗涤	N,N-二甲基乙 酰胺、N,N-二 异丙基乙胺、 环丙胺、三氯 乙醇、盐酸、 乙酸乙酯、 NaC1、水	3418	683.6	进入污 水处理 站 处理	间歇
W1-3	冷凝废水	离心	碳酸铯、铜胺 络合物、碘化 亚铜、丙酮、 水	2598	519. 6		间歇

W1-4	离心废水	离心	碳酸铯、铜胺络合物、氨水	2171	434. 2		间歇
"1 1			水	2111	101.2		1-7 87/
W1-5	离心废水	离心	铜胺络合物、水	1965	393		间歇
W1-6	冷凝废水	干燥	二甲亚砜、丙酮、甲醇	20	4		间歇
S1-1	冷凝废液	减压浓缩	乙酸乙酯	33	6. 6		间歇
S1-2	离心废液	离心	乙酸乙酯、三 氯乙醇	217	43. 4		间歇
S1-3	冷凝废液	干燥	乙酸乙酯	22	4.4		间歇
S1-4	固废	压滤、析晶	活性炭、铜粉	24	4.8		间歇
S1-5	冷凝废液	冷凝	二甲亚砜、丙酮、甲醇	83	16. 6	交有危废处理	间歇
S1-6	冷凝废液	减压干燥	二甲亚砜、丙酮、乙腈	17	3. 4		间歇
S1-7	冷凝废液	冷凝	二甲亚砜、丙酮、甲醇	103	20. 6		
S1-8	冷凝废液	减压干燥	二甲亚砜、丙酮、甲醇	21	4.2	资质单 位处置	间歇
S1-9	冷凝废液	冷凝	二甲亚砜、丙酮、乙腈	65	13		间歇
S1-10	冷凝废液	减压干燥	二甲亚砜、丙酮、乙腈	14	28. 8		间歇
			二甲亚砜、四				
S1-11	冷凝废液	压滤	氢呋喃、乙酸	88	7. 6		间歇
			异丙酯				
S1-12	冷凝废液	压滤	乙酸异丙酯	30	6		间歇
S1-13	冷凝废液	减压干燥	乙酸异丙酯	5	1		间歇

2、达可替尼实验工艺流程及产污环节分析:

简述反应原理:以 7-氟-6-硝基-4-喹唑啉酮为起始原料,加入 3-氯-4-氟苯胺通过取代反应得到中间体 I,再与甲醇钠经过甲氧基取代反应得到中间体 II,再与水合 肼发生还原反应得到中间体 III,再与(2E)-4-(1-哌啶基)-2-丁烯酸盐酸盐通过酰胺化反应得到达可替尼粗品,再经精制得到达可替尼精制品。达克替尼工艺产污环节见下表 3-8 所示。

(1) 主要反应方程式

1) 氯代、取代反应

SM1: 7-氟-6-硝基-4-喹唑啉酮 SM2: 3-氯-4-氟苯胺

中间体 I: N-(3-氯-4-氟苯基)-7-氟-6-硝基喹唑啉-4-胺

有机溶剂: 氯化亚砜、正庚烷、乙腈

2) 甲氧基取代反应

中间体 II: N-(3-氯-4-氟苯基)-7-甲氧基-6-硝基喹唑啉-4-胺

有机溶剂: 甲醇

3) 还原反应

中间体Ⅲ: N4-(3-氯-4-氟苯基)-7-甲氧基-喹唑啉-4,6-二胺

有机溶剂: 四氢呋喃(THF)、正庚烷

4) 酰胺化反应

SM3: (2E)-4-(1-哌啶基)-2-丁烯酸盐酸盐

达可替尼粗品: (2E)-N-[4-[(3-氯-4-氟苯基)胺基]-7-甲氧基-6-喹唑啉基]-4-(1-哌啶基)-2-丁烯酰胺•一水合物

有机溶剂: 二氯甲烷、正庚烷、N,N-二甲基乙酰胺

5) 粗品纯化

达克替尼粗品: (2E)-N-[4-[(3-氯-4-氟苯基)胺基]-7-甲氧基-6-喹唑啉基]-4-(1-哌啶基)-2-丁烯酰胺•一水合物

有机溶剂: 乙醇

各工序生产制度、反应条件见下表所示。项目整个生产过程为间歇操作,各步骤 反应结束后进入下一个反应装置,当步骤不循环使用。

(2) 工艺流程

1) 中间体 [生产工艺

在搪玻璃(或玻璃)反应釜中,先加入氯化亚砜和 SM1。加毕,室温下保温搅拌,加入部分 N,N-二甲基甲酰胺,反应釜夹套通热乙二醇升温至 60-70℃发生取代反应,搅拌过程中缓慢加入剩余的 N,N-二甲基甲酰胺,至体系澄清,监控完毕,浓缩氯化亚砜,回收,从投料到浓缩产生反应尾气(G2-1)主要为 HCl,SO2 酸性废气,进入工艺废气处理装置处理。浓缩结束降温加入正庚烷搅拌,打浆压滤,滤液为含有酸性的有机溶剂,先经二级冷凝器冷凝,馏分为回收正庚烷,不凝气(G2-2)主要含 N,N- 二甲基甲酰胺,正庚烷、氯化亚砜,进入工艺废气处理装置处理,冷凝废液(S2-1) 主要含 N,N-二甲基甲酰胺,正庚烷、氯化亚砜,交由危废资质单位处置。

压滤固体加入釜内,控温 25±5℃,加入乙腈,搅拌中缓慢加入 SM2 的乙腈溶液,体系呈黄色浑浊,反应完毕后,加入碳酸氢钠水溶液至 PH8-9,搅拌 3h,离心,滤液浓缩,经二级冷凝器冷凝,馏分为回收乙腈,不凝气(G2-3)主要为乙腈、水蒸气,进入工艺废气处理装置处理,釜底废水(W2-1)主要含乙腈,水,碳酸盐,进入厂区污水处理站处理;离心固体干燥,得中间体 I。干燥废气先经二级冷凝器冷凝,不凝气(G2-4)为乙腈和水蒸气,进入工艺废气处理装置处理,冷凝废水(W2-2)主要含乙腈和水,进入厂区污水处理站处理。

2) 中间体Ⅱ生产工艺

在搪玻璃反应釜中,加入甲醇和中间体 I,搅拌降温至 10-20℃,缓慢加入甲醇钠,放热,控温低于 50℃。加毕,加热到 65-70℃,逐渐体系澄清至反应完毕。缓慢加入饮用水,体系逐渐呈黄色浑浊,搅拌 3h,离心,滤液废水(W2-3)主要含甲醇,水, 氟化钠及反应杂质,交由厂区污水处理站处理; 离心固体于 60±5℃下干燥,得中间体 II。干燥废气先经二级冷凝器冷凝,不凝气(G2-5)为甲醇和水蒸气,进入工艺废气处理装置处理,冷凝废水(W2-4)主要含甲醇和水,交由厂区污水处理站处理。

3) 中间体Ⅲ生产工艺

在搪玻璃反应釜中,加入四氢呋喃,中间体Ⅱ,活性炭,水合肼,搅拌升温至60-70℃ 发生还原反应,体系逐渐澄清,反应过程中产生废气(G2-6)主要为氮气和四氢呋喃,进 入工艺废气处理装置处理;反应完毕,向压滤罐中加入二氧化硅,趁热压滤,废渣(S2-2) 含有二氧化硅,活性炭和四氢呋喃,交由危废资质单位处置;滤液中缓慢加入正庚烷,析 晶后离心,滤液经二级冷凝器冷凝,得到回收四氢呋喃和正庚烷;不凝气(G2-7)主要为四氢呋喃和正庚烷,进入工艺废气处理装置处理,釜底废液(S2-3)主要含四氢呋喃和正庚烷及反应杂质,交由危废资质单位处置;离心固体在 60±5℃下干燥,得中间体III。干燥废气经二级冷凝器冷凝,不凝气(G2-8)为四氢呋喃和正庚烷,进入工艺废气处理装置处理,冷凝废液(S2-4)主要含四氢呋喃和正庚烷,交由危废资质单位处置。

4) 达可替尼粗品生产工艺

在搪玻璃(或玻璃)反应釜中,先加入二氯甲烷和 SM3,不溶,加入 N,N-二甲基甲酰胺,降温至 0-10℃反应,缓慢加入草酰氯,体系逐渐澄清,有气体(G2-9)放出,主要为一氧化碳,二氧化碳,HC1 和二氯甲烷蒸气,进入工艺废气处理装置处理, 反应完毕,浓缩,滤液经二级冷凝器冷凝,得到回收二氯甲烷。固体中再加入正庚烷, 搅拌浓缩,经二级冷凝器冷凝,得回收正庚烷,不凝气(G2-10)主要为二氯甲烷和正庚烷蒸气,进入工艺废气处理装置处理,冷凝废液(S2-5)主要为二氯甲烷、正庚烷,交由危废处置单位处置。控温 25±5℃,向釜内加入 N,N-二甲基乙酰胺,搅拌缓慢加入含中间体Ⅲ 的N,N-二甲基乙酰胺溶液,体系澄清至反应完毕,缓慢加入碳酸钠水溶液,至 PH=8-9,离心,得到离心废水(W2-5)主要含 N,N-二甲基乙酰胺,水, 碳酸盐,及反应杂质,交由厂区污水处理站处理;离心固体在 60±5℃下干燥,干燥废气先经二级冷凝器冷凝,不凝气(G2-11)主要为 N,N-二甲基乙酰胺和水蒸气,进入工艺废气处理装置处理,冷凝废水(W2-6)主要含水,N,N-二甲基乙酰胺,交由厂区污水处理站处理。

5) 达可替尼成品生产工艺

在搪玻璃反应釜中,先加入无水乙醇和达可替尼粗品,搅拌加热溶解,趁热经过滤膜,滤液到达洁净区反应釜,保证体系为澄清的,加热过程中,缓慢加入饮用水,直到有固体析出,缓慢降温至室温,保持搅拌4h,离心,滤液浓缩经二级冷凝器冷凝,得到回收乙醇;不凝气(G2-12)主要为乙醇和水蒸气,进入工艺废气处理装置处理,釜底废水(W2-7)主要含乙醇,水及杂质,交由污水处理站处理;离心固体干燥,得达克替尼精制品。干燥废气先经二级冷凝器冷凝,不凝气(G2-13)乙醇和水蒸气,进入工艺废气处理装置处理,冷凝废液(W2-8)主要含乙醇和水,交由污水处理站处理。达克替尼工艺产污环节见下表所示。

表 2-2 达克替尼工艺产污表 (20 批次,总用时 122h)

绝早	k7 #h	产生位置	污染物种类	产生量		处置	立 上
编号	名称		行来物件关	kg/a	kg/批次	措施	产生规律
G2-1	后应昆层	机业 巨序	SO_2	96	4. 8		间歇
G2-1	反应尾气	投料、反应	HC1	59	2. 95		间歇
			正庚烷	25	1. 25		间歇
G2-2	不凝气	冷凝回收	氯化亚砜	14	0. 7		间歇
G2 ⁻ 2	/\'''	溶剂	N, N-二甲基甲酰 胺	5	0. 25		间歇
		冷凝回收	乙腈	25	1. 25		间歇
G2-3	不凝气	溶剂	水蒸气	50	2. 5		间歇
60.4	7.7k4 F-	*	乙腈	6	0.3		间歇
G2-4	不凝气	减压干燥	水蒸气	10	0. 5		间歇
00 F	工版 (与	冰 尺子.烬	甲醇	100	5	进入	间歇
G2-5	不凝气	减压干燥	水蒸气	80	4	工艺	间歇
			氮气	383	19. 15	废	间歇
G2-6	反应尾气	投料、反应	四氢呋喃	27	1. 35	处 装置	间歇
00.7	T NEW (C)	冷凝回	四氢呋喃	102	5. 1	处理	间歇
G2-7	不凝气	收溶剂	正庚烷	47	2. 5		间歇
60.0	TWA	冰 尺子.焊	四氢呋喃	9	0. 45		间歇
G2-8	不凝气	减压干燥	正庚烷	147	7. 35		间歇
			二氯甲烷	35	1. 75		间歇
CO O		机构 巨忠	HCL	80	4		间歇
G2-9		反应尾气 投料、反应	CO_2	60	3		间歇
			СО	80	4		间歇
G2-1	不将左	冷凝回收	二氯甲烷	64	3. 2		间歇
	不凝气	溶剂	正庚烷	12	0.6		间歇
G2-11	不凝气	减压干燥	N, N-二甲基乙酰	20	1		间歇

			胺					
			水蒸气	180	9		间歇	
CO 10	不	冷凝回收	乙醇	35	1. 75		间歇	
G2-12	气	溶剂	水蒸气	50	2.5		间歇	
G2-13	7187	港民工場	乙醇	10	0.5		间歇	
62-13	不凝气	減压干燥	水蒸气	30	1.5		间歇	
W2-1	冷凝废水	离心	水分、乙腈、碳酸 盐	20513	1025. 65		间歇	
W2-2	冷凝废	减压干燥	水分、乙腈	92	4. 6		间歇	
W2-3	离心废水	离心	水分、甲醇、氟化 钠	31290	564. 5	进入	间歇	
W2-4	冷凝废水	减压干燥	水分、甲醇	380	19	污水 处理	间	
W2-5	离心废水	离心	水分、N, N-二甲基 乙酰胺、碳酸盐	31050	1552. 5	· 站 处理	间歇	
W2-6	冷凝废水	减压干燥	水分、N, N-二甲基 乙酰胺	615	30. 75		间歇	
W2-7	冷凝废水	离心	水分、乙醇	2593	129.65		间歇	
W2-8	冷凝废水	减压干燥	水分、乙醇	101	5. 05		间歇	
S2-1	压滤废液	打浆压滤	正庚烷、氯化亚砜、 N,N-二甲基乙酰 胺	119	5. 95	由废质位置	由危	间歇
S2-2	压滤固体	压滤	二氧化硅、活性炭、 四氢呋喃	1071	53. 55		间歇	
S2-3	离心废液	离心	四氢呋喃、正庚烷、 杂质	460	23		间歇	
S2-4	冷凝废液	减压干燥	四氢呋喃、正庚烷	33	1. 65		间歇	
S2-5	冷凝废液	搅拌浓缩	正庚烷、二氯甲烷	188	9. 4		间歇	

3、盐酸尼卡地平实验工艺流程及产污环节分析:

简述反应原理:以间硝基苯甲醛和乙酰乙酸甲酯为起始原料,通过缩合反应得到中间体 I, 再与 3-氨基-2-丁酸氰乙酯关环反应得到中间体 II, 再与氢氧化钠、四氢呋喃经水解反应得到中间体III, 再经过与 N-苄基-N-甲基乙醇胺缩合反应得到盐酸尼卡地平。盐酸尼卡地平工艺产污环节见下表3-9所示。

(1) 主要反应方程式

1) 中间体 I 化学反应方程式(缩合反应)

中间体 I: 2-(3-硝基苯亚甲基)乙酰乙酸甲酯有机溶剂: 异丙醇

催化剂: 哌啶和冰乙酸

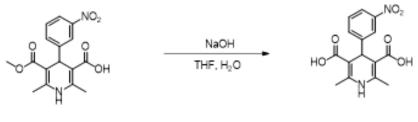
副反应: 间硝基苯甲醛和乙酰乙酸甲酯缩合和未发生消除。

2) 中间体Ⅱ 化学反应方程式(关环反应)

中间体II: 3-(2-氰基乙基)5-甲基2,6-二甲基-4-(3-硝基苯基)-1,4 二氢吡啶-3,5- 二 羧酸

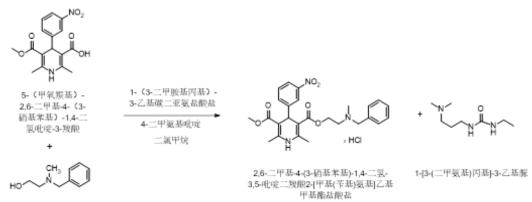
有机溶剂: 乙醇催化剂: 冰乙酸

副反应: 在酸性条件下反应中的水对 2-(3-硝基苯亚甲基)乙酰乙酸甲酯进行 1,4 加成反应。


3) 中间体Ⅲ化学反应方程式(水解反应)

3-〈2-氰基乙基〉5-甲基2,6-二甲 基-4-(3-硝基苯基〉-1,4-二氢吡啶 -3,5-二羧酸

5- (甲氧羰基) -2,6-二甲基-4- (3-硝基苯基) -1,4-二氢哌啶-3-羧酸


中间体Ⅲ: 5-(甲氧羰基)-2,6-二甲基-4-(3-硝基苯基)-1,4-二氢吡啶-3-羧酸溶剂: 四氢呋喃、水

副反应:在碱性条件下 5-(甲氧羰基)-2,6-二甲基-4-(3-硝基苯基)-1,4-二氢 吡啶-3-羧酸中的甲酯进一步发生水解。

5- (甲氧羰基) -2,6-二甲基-4- (3-硝基苯基) -1,4-二氢吡啶-3-羧酸 2,6-二甲基4- (3-硝基苯基) -1,4-二氢吡啶-3,5-二羧酸

4) 盐酸尼卡地平化学反应方程式(缩合反应)

N-苄基-N-甲基乙醇胺

盐酸尼卡地平: 2,6-二甲基-4-(3-硝基苯基)-1,4-二氢-3,5-吡啶二羧酸 2-[甲基(苄基) 氨基]乙基甲基酯盐酸盐

有机溶剂:二氯甲烷

副反应: 在光照和溶剂中残留氧气的存在下产品会被氧化成必定化合物。

2,6-二甲基-4-(3-硝基苯基)-1,4-二氢-3,5-吡啶二羧酸2-[甲基(苄基)氨基]乙基 甲基酯盐酸盐

脱氢盐酸尼卡地平

各工序生产制度、反应条件见下表所示。项目整个生产过程为间歇操作,各步骤 反应结束后进入下一个反应装置,该步骤不循环使用。

(2) 工艺流程

1) 中间体 [生产工艺(缩合反应)

在搪玻璃反应釜中,先一次性加入间硝基苯甲醛,再一次性加入异丙醇,开启搅拌,再一次性加入乙酰乙酸甲酯,随后一次性加入哌啶,最后一次性加入冰乙酸,加毕,升温至20℃,反应尾气(G3-1)为异丙醇有机废气,进入工艺废气处理装置处理,反应5h后 TLC 监控反应。TLC显示间硝基苯甲醛反应完全后,将反应液冷却至 0-5℃析晶5小时,随后离心过滤,离心产生的洗涤废液主要为异丙醇,可作进一步回收处理,回收过程中二级冷凝器冷凝未冷凝的废气(G3-2)主要为异丙醇有机废气,进入工艺废气处理装置处理,回收过程中得到的有机废液(S3-1:异丙醇、中间体 I、乙酰乙酸甲酯及反应杂质等)交由危废资质单位处置。离心所得中间体 I 固体干燥,干燥废气为异丙醇等有机废气,先经二级冷凝器冷凝,不凝气(G3-3)进入工艺废气处理装置处理,冷凝废液(S3-2)主要含异丙醇,交由危废资质单位处置。干燥结束后得到中间体 I。

2) 中间体Ⅱ生产工艺(关环反应)

在搪玻璃反应釜中,先一次性加入中间体 I ,随后一次性加入乙醇,开启搅拌,紧接着一次性加入 3-氨基-2-丁酸氰乙酯,最后一次性加入冰乙酸,加毕,升温至 50℃ 反应,反应尾气 (G3-4) 为乙醇有机废气,进入工艺废气处理装置处理,反应 8h 后 TLC 监控反应。TLC 显示中间体 I 反应完全后,将反应液冷却至20℃析晶5小时,随后离心过滤,离心产生的洗涤废液主要溶剂为乙醇,可作进一步回收处理,回收过程中二级冷凝器冷凝未冷凝的废气 (G3-5) 主要为乙醇有机废气,进入工艺废气处理

装置处理;回收过程中所得到的有机废液(S3-3:乙醇、乙酸、反应杂质等)交由危废资质单位处置。将离心所得中间体II固体干燥,干燥废气为乙醇等有机废气,先经二级冷凝器冷凝,不凝气(G3-6)进入工艺废气处理装置处理,冷凝废液(S3-4)主要含乙醇,交由危废资质单位处置。干燥结束后得到中间体II。

3) 中间体Ⅲ生产工艺(水解反应)

在搪玻璃反应釜中,先一次性加入中间体II,随后一次性加入四氢呋喃,开启搅拌,将体系冷却至0℃,缓慢滴加氢氧化钠溶液,滴毕,0-5℃反应,反应尾气(G3-7)为四氢呋喃有机废气,进入工艺废气处理装置处理,2小时后,TLC 监控反应,待中间体II反应完全后,将反应体系减压浓缩,回收部分四氢呋喃,浓缩过程中二级冷凝器冷凝未冷凝的废气(G3-8)主要为四氢呋喃和水的有机废气,进入工艺废气处理装置处理;过程中经二级冷凝器冷凝所得到的有机废液(S3-5:四氢呋喃、水、反应杂质等)交由危废资质单位处置。将减压浓缩所得的水相冷却至 0℃,缓慢滴加 15%盐酸溶液,滴毕,保温 0-5℃析晶 2 小时,离心过滤,所得离心废液(W3-1)主要成分有水、盐酸、四氢呋喃、氯化钠,中间体III及反应副产物等,进入厂区污水处理站处置。对离心所得中间体III固体进行干燥,干燥废气为异丙醇等有机废气,先经二级冷凝器冷凝,不凝气(G3-9)进入工艺废气处理装置处理,冷凝废液(S3-6)主要含四氢呋喃,交由危废资质单位处置。干燥结束后得到中间体III。

4) 盐酸尼卡地平生产工艺(缩合反应)

在搪玻璃反应釜中,先一次性加入中间体III,随后一次性加入二氯甲烷,然后加入 N-苄基-N-甲基乙醇胺,紧接着加入 4-二甲氨基吡啶,最后再加入 1-(3-二甲胺基丙基)-3-乙基碳二亚氨盐酸盐,开启搅拌,升温至 40℃反应,反应尾气(G3-10)为二氯甲烷有机废气,进入工艺废气处理装置处理,12 小时后,TLC 监控反应,中间体III反应完全后,将体系温度降至 20℃,向反应体系中加入碳酸钠溶液,搅拌 30分钟,分液,分液所得水相(W3-2)主要含碳酸钠、N-苄基-N-甲基乙醇胺、4-二甲氨基吡啶、1-(3-二甲胺基丙基)-3-乙基碳二亚氨盐酸盐、二氯甲烷及反应杂质等,进入厂区污水处理站处置。随后将有机相降温至 0±5℃,向体系中加入 15%盐酸溶液,保温搅拌 60±5 分钟,分液,分液所得水相(W3-3)主要含盐酸、N-苄基-N-甲基乙醇胺、4-二甲氨基吡啶、1-(3-二甲胺基丙基)-3-乙基碳二亚氨盐酸盐、二氯甲烷及反应杂质等,进入厂区污水处理站处置。然后加入纯化水洗涤有机相,分液,

分液所得水相(W3-4)主要含反应杂质等,进入厂区污水处理站处置。将有机相减压浓缩,回收部分二氯甲烷,浓缩过程中二级冷凝器冷凝未冷凝的废气(G3-11)主要为二氯甲烷有机废气,进入工艺废气处理装置处理;过程中经二级冷凝器冷凝所得到的有机废液(S3-7:二氯甲烷、水、反应杂质等)交由危废资质单位处置。向浓缩所得的油状物中加入丙酮和甲醇,60℃溶清后缓慢冷却至 20℃析晶 20 小时,随后离心过滤,离心产生的废液主要溶剂为丙酮和甲醇,可作进一步回收处理,回收部分丙酮和甲醇,回收过程中二级冷凝器冷凝未冷凝的废气(G3-12)主要为丙酮和甲醇的有机废气,进入工艺废气处理装置处理;回收过程中所得到的有机废液(S3-8:丙酮、甲醇、反应杂质等)交由危废资质单位处置。将离心所得盐酸尼卡地平固体干燥,干燥废气主要为丙酮和甲醇的有机废气,先经二级冷凝器冷凝,不凝气(G3-13)进入工艺废气处理装置处理,冷凝废液(S3-9)主要含丙酮和甲醇,交由危废资质单位处置。盐酸尼卡地平工艺产污环节见下表所示。

表2-3 盐酸尼卡地平产污表(10 批次,共用时130h)

编号	名称	产生位置	污染物种类	产生量		处置措	产生规律	
細力	4400		初朱初作矢	kg/a	kg/批	施	, 工/处于	
G3-1	反应废气	混合反应	异丙醇	11	1. 1			间歇
G3-2	不凝废气	离心过滤	异丙醇	8	0.8		间歇	
G3-3	干燥废气	干燥	异丙醇	6	0.6		间歇	
G3-4	反应废气	混合反应	乙醇	15	1.5		间歇	
G3-5	不凝废气	离心过滤	乙醇	12	1.2	进入工	间	
G3-6	干燥废气	干燥	乙醇	10	1		间歇	
G3-7	反应废气	混合反应	四氢呋喃	30	3	处理装	间歇	
G3-8	不凝废气	减压浓缩	四氢呋喃	23	2. 3	置处理	ia ek	
G3-8	1 小艇废气		水	7	0.7		间歇	
62.0	工場成長	工規	四氢呋喃	14	1.4) - H	
G3-9	干燥废气	干燥	水	5	0.5		间歇	
G3-	反应废气	混合反应	二氯甲烷	55	5. 5		间歇	
G3-11	不凝废气	减压浓缩	二氯甲烷	49	4.9		间歇	

90.10		->- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	丙酮	41	4.1)— III
G3-12	不凝废气	离心过滤	甲醇	20	2		间歇
60.10	工程成長	구 4년	丙酮	22	2.2) III
G3-13	干燥废气	干燥	甲醇	10	1		间歇
W3-1	离心废水	离心过滤	四氢呋喃、盐酸氯化	3023	302. 3		间歇
w3-1	岗心)及小	尚心 凡德	钠、杂质等	3023	302. 3		门场从
			碳酸钠、N-苄基-N- 甲				
			基乙醇胺、4-二甲氨基吡				
W3-2	洗涤废水	碱洗	啶、1-(3-二甲胺基丙基)	3202	320. 2		间歇
			-3-乙基碳二亚氨盐酸			进入厂	
			盐、二氯甲烷及反应杂质			区污水	
			盐酸 N-苄基-N-甲基乙醇			处理站	
			胺、4-二甲氨基吡啶、1-			处置	
W3-3	酸化废水	酸化	(3-二甲胺基丙基)-3-	2756	275. 6		间歇
			乙基碳二亚氨盐酸盐、二				
			氯甲烷及反应杂质等				
W3-4	洗涤废水	水洗	盐酸尼卡地平、水、	3063	306. 3		间歇
"0 1	初胡赤汉八	71.00	反应杂质等	3003	300. 3		1+1.50/
S3-1	冷凝废液	离心过滤	异丙醇、哌啶、乙酸及有	239	23. 9		间歇
55 1	1 4 199€//交刊文	A 1. 12.1/6	机杂质	200	20. 3		1+1 20/
S3-2	干燥冷凝废液	干燥	异丙醇	15	1.5		间歇
S3-3	冷凝废液	离心过滤	乙醇、乙酸、有机杂质等	359	35. 9	交由危	间歇
S3-4	干燥冷凝废液	干燥	乙醇	13	1.3	废资质	间歇
S3-5	冷凝废液	离心过滤	四氢呋喃、水、反应	100	10	单位 单位 处置	间歇
			杂质等				
S3-6	冷凝废液	干燥	四氢呋喃、水	55	5. 5	-	间歇
S3-7	冷凝废液	减压浓缩	二氯甲烷、水、反应杂质	100	10		间歇

S3-8	冷凝废液	离心过滤	丙酮、甲醇、反应杂质	320	32	间歇
S9	冷凝废液	干燥	丙酮、甲醇	50	5	间歇

4、重酒石酸去甲肾上腺素实验工艺流程及产污环节分析:

简述反应原理:在搪玻璃反应釜中将氯乙酰氯滴加入临苯二酚,反应得中间体I,再加入乙腈并滴加氨水得中间体II。再加入乙醇、钯碳反应得中间体III,再滴加 R-2- 甲氧基苯乙酸的甲醇溶液反应得中间体IV,再加入乙醇和酒石酸反应得重酒石酸去甲肾上腺素。重酒石酸去甲肾上腺工艺产污环节见下表3-10所示。

主要反应方程式

1) 取代反应

2) 取代反应

4-(2-氯-1-氧代乙基)-1.2-苯二酚

4-(2-氨基-1-氧代乙基)-1.2-苯二盐酸盐酚

3) 还原反应

4-(2-氨基-1-氧代乙基)-1.2-苯二盐酸盐酚

4-(2-氨基-1-羟基乙基)-1.2-苯二酚

拆分反应

4) 成盐反应

各工序生产制度、反应条件见下表所示。项目整个生产过程为间歇操作,各步骤 反应结束后进入下一个反应装置,当步骤不循环使用。

(2) 工艺流程

1) 中间体 [生产工艺

在搪玻璃反应釜中先后加入二氯甲烷、三氯化铝,加完后降温在 5-10℃下搅拌反应半小时。控温在 5-10℃下将临苯二酚加入反应釜中,搅拌反应半小时。在氮气保护下,将氯乙酰氯滴加入反应釜中,控制反应温度在 5-10℃下,加完后升温至 25℃處,反应尾气(G4-1)为氯化氢和二氯甲烷废气,废气进入工艺废气处理装置处理。反应结束降温至 5-20℃滴加入 5%盐酸溶液,然后加入饮用水析晶 2 小时,离心得到固体备用。回收离心母液,经冷凝产生的冷凝废水(W4-1)主要为二氯甲烷、盐酸、铝盐等,进入污水站进行处理;冷凝回收大部分二氯甲烷,含二氯甲烷的不凝气(G4-2)中进入工艺废气处理装置处理。

离心固体在 50℃真空干燥 6-8 小时,干燥后不凝气(G4-3)为二氯甲烷,进入工艺 废气处理装置处理,冷凝废液(S4-1)为二氯甲烷,交由有危废处理资质单位处置。

将离心固体用乙腈在控温在 60℃精制,反应尾气 VOCs(G4-4)为乙腈废气,废气进入工艺废气处理装置处理。降温至 20℃析晶离心,产生的离心和洗涤废液经二级冷凝后回收乙腈;产生的冷凝废液(S4-2)为乙腈,交由危废处理资质单位处置。冷凝不凝气(G4-5)为乙腈,进入工艺废气处理装置处理。

离心后的固体在 50℃真空干燥 6-8 小时,干燥产生的废气为有机废气乙腈,先经二级冷凝器冷凝,含乙腈的不凝气(G4-6)进入工艺废气处理装置处理,冷凝废液(S4-3)主要含乙腈,交由危废处理资质单位处置。干燥后的固体为酒石酸去甲肾上腺素中间体 I ,待进行下一步工序。

2) 中间体Ⅱ生产工艺

在搪玻璃反应釜中在氮气的保护下,先后入乙腈、中间体 I 后,降温到 5-10℃ 滴加氨水。氨水加毕,升温至 40℃反应 16h,反应产生的尾气(G4-7)为含乙腈和

氨的废气,进入工艺废气处理装置处理。反应结束后降温至 5-10℃搅拌析晶 3 小时,离心并用乙腈和水洗涤,离心得到固体备用。离心母液经二级冷凝后回收乙腈,在冷凝过程中产生的冷凝废水(W4-2)含乙腈、氨水、反应杂质等的废水送污水站处理;冷凝不凝气(G4-8)为乙腈和氨水等废气,进入工艺废气处理装置处理。

离心固体加入乙醇搅拌降温 5-10℃后滴加 30%的盐酸乙醇溶液,控制温度在5℃ 析晶搅拌 4 小时,再进行离心,离心产生的离心废液(S4-4)主要为盐酸乙醇、中间体 II、水和无机杂质,装桶后作为危废送有资质的单位处置。离心固体在 40±5℃ 真空干燥 6-8 小时,得中间体 II。干燥产生的废气为乙腈、乙醇有机废气,经二级冷凝器冷凝,不凝气(G4-9)进入工艺废气处理装置处理,冷凝废液(S4-5)主要含乙醇、乙腈、水和无机杂质,装桶后作为危废送有资质的单位处置。

3) 中间体Ⅲ生产工艺

高压反应釜在氮气保护下,先加入乙醇和水,再加入中间体Ⅱ,最后加入钯碳,加料完成后,用氮气对反应釜置换 3 次,再用氢气置换 3 次后,再加入氢气将反应釜压力升到 0.5MPa 压力下,升温至 30℃反应 16h。

反应完毕后降温至 25℃,用氮气置换合格后,用压滤机进行压滤,滤饼用乙醇洗涤,滤液备用。滤饼(S4-6)主要含钯碳,装袋后交由危废资质单位处置。滤液在氮气保护下降温至 5-10℃,滴加氨水至 Ph=8.5,降温到 5-10℃,析晶搅拌2 小时后进行离心,离心产生的洗涤废液(S4-7)主要为乙醇、中间体III、水和无机杂质,装桶后交由有危废资质单位处置,离心后收集的固体装袋待干燥。收集的固体加入干燥器内在 40℃真空干燥 6-8 小时,得中间体 III。干燥废气为含乙醇、水的有机废气,先经二级冷凝器冷凝,含乙醇不凝气(G4-10)进入工艺废气处理装置处理,冷凝废液(S4-8)主要含乙醇、水,装桶后交由有危废资质单位处置。干燥后的固体为酒石酸去甲肾上腺素中间体III,待进行下一步工序。

4) 中间体IV生产工艺

在氮气保护下,往搪玻璃反应釜中加入甲醇,再加入中间体Ⅲ,加完后控温 20-25℃下滴加 R-2-甲氧基苯乙酸的甲醇溶液。在 20-25℃下进行拆分反应 2 小时,降温至 5-10℃反应 2 小时,控制在析晶 5℃,反应尾气(G4-11)为甲醇有机废气,进入工艺废气处理装置处理。

反应结束进行离心产生的废液(S4-9)含有甲醇有机物废液,装桶后交由有危废

资质单位处置。在反应釜中将离心得到固体加入甲醇搅拌升温到 65-70℃,搅拌溶解 2 小时,反应尾气(G4-12)为甲醇有机废气,进入工艺废气处理装置处理。缓慢降 至 5-10℃后搅拌析晶 4 小时,对混悬液进行离心,离心产生的洗涤废液(S4-2)为甲醇、中间体IV废液,装桶后交由有危废资质单位处置。离心所得固体加人纯化水,升温至 70℃溶清后降温至 20℃,再滴加入氨水至 PH=9,大量固体析出后,在 20-25℃搅拌 2 小时后离心,洗涤离心产生的洗涤废水(W4-3)含有甲醇、水、中间体IV等废液,装桶后交由有危废资质单位处置。离心固体在 50℃用真空器干燥 6-8 小时,得中间体 VI。干燥产生的废气为含甲醇,水的有机废气,先经二级冷凝器冷凝,含甲醇,水的不凝气(G4-13)进入工艺废气处理装置处理,冷凝废液(W4-4)含甲醇,水废液,装桶后交由有危废资质单位处置。

5) 重酒石酸去甲肾上腺素生产工艺

在搪玻璃反应釜中加入乙醇,再加入中间体IV和酒石酸,加完后在 50℃搅拌溶清后,保温成盐反应半小时,反应产生的尾气(G4-14)为乙醇废气,进入工艺废气处理装置处理。

缓慢降温至 15-20℃搅拌析晶 2 小时。进行离心并用乙醇洗涤,离心产生的洗涤废液(S4-11)含乙醇、无机杂质的废液,装桶后交由有危废资质单位处置。离心固体在 50℃真空干燥器干燥 6-8 小时,得重酒石酸去甲肾上腺素。干燥产生的废气为乙醇有机废气,先经二级冷凝器冷凝,含乙醇的不凝气(G4-15)进入工艺废气处理装置处理,含乙醇冷凝废液(S4-12),装桶后交由有危废资质单位处置。重酒石酸去甲肾上腺工艺产污环节见下表所示。

表2-4 重酒石酸去甲肾上腺工艺产污表(2 批次,共用时124h)

編号	名称	产生位置	污染物种	产生	E量	│ │	产生规律
711/10 J) 主位 <u>国</u>	类	kg/a	kg/批次	火百油瓜	<i>)</i> 土 观 律
G4-1	反应尾气	投料、反应	二氯甲烷	8	4		间歇
G4 ⁻ 1	及应库(汉 件、	HCL	5	2. 5	进入工共应	In 1 AV
G4-2	不凝气	减压蒸馏	二氯甲烷	6	3	进入工艺废 气处理装置	间歇
04-2	/ 形定 し	回收溶剂	一球「下が	0	3	· 处理表直	山场人
G4-3	不凝气	减压干燥	二氯甲烷	5	2. 5	文/生	间歇
G4-4	不凝气	溶解	乙腈	5	2. 5		间歇

G4-5	不凝气	减压蒸馏回 收溶剂	乙腈	3	5		间歇
G4-6	不凝气	减压干燥	乙腈	2	1		间歇
			乙腈	15	7. 5		
G4-7	反应尾气	投料	氨气	30	15		间歇
64.0	T 164 F	减压蒸馏回	乙腈	10	5		t=1 El4
G4-8	不凝气	收溶剂	氨气	3	1.5		间歇
G4-9	不凝气	减压干燥	乙醇	15	7. 5		间歇
64-9	小妖气		乙腈	1	0. 5		[印] 匈人
G4-10	不凝气	减压干燥	乙醇	10	5		间歇
G4-11	反应尾气	投料、反应	甲醇	15	7.5		间歇
G4-12	不凝气	溶解	甲醇	17	8. 5		间歇
	工程 层	冲压工品	甲醇	1	0.5		1-1 11/2
4-13	不凝气	减压干燥	水	1	0.5		间歇
G4-14	反应尾气	投料、	乙醇	4	2		间歇
G4-15	不凝气	减压干燥	乙醇	1	0. 5		间歇
			水分	1124	562		
	冷凝废气	二级冷凝	二氯甲烷	18	9		间歇
4-1	1寸5处/久【	—约777%	三氯化铝	5	2.5		111/20/
			杂质	255	127. 5		
			氨	105	52. 5	进入污水处	
			水分	1021	510. 5	理站 处理	
W4-2	冷凝废水	二级冷凝	乙腈	24	2		间歇
			杂质	10	51		

			甲醇	2	1		
W4-3	洗涤废水	离心洗涤	中间体IV	0.3	0. 15		间歇
			水	101	50. 5		
W.A. A	VA VEZ 105 1.	T 10 1/4 1/47	甲醇	1	0. 5		는그 FL
W4-4	冷凝废水	干燥冷凝	水	1	0. 5		间歇
S4-1	冷凝废液	干燥冷凝	二氯甲烷	23	11.5		间歇
S4-2	冰冰 床 冻	减压蒸馏回	乙腈	17	8. 5		间歇
54-2	冷凝废液	收溶剂	杂质	72	36		门切场人
S4-3	冷凝废液	干燥冷凝	乙腈	8	4	交危废资质	间歇
			乙醇	149	74. 5	单位处置	
S4-4	洗涤废液	南小州沙	中间体II	1	0. 5)
34-4		离心洗涤	水	18	9		间歇
			无机杂质	80	40		
			乙醇	18	9		
C4 F	√A *** は は がた	工程及核	无机杂质	3	1.5		151 84
S4-5	冷凝废液	干燥冷凝	水	4	2		间歇
			乙腈	1	0.5		
S4-6	废渣	压滤	钯碳	10. 6	5. 3		间歇
			乙醇	392	196		
C 4 7	र्थाः द्या स्ट	क्रिं .	中间体III	1	0.5		问题
S4-7	离废液	离心	水	145	72. 5		间歇
			无机杂质	16	8		
S4-8	冷废	工品及返	乙醇	2	1		间歇
34 −8		干燥冷凝	水	1	0.5		円 切人
C4 0	ह्य .N. क्रि <i>ओ</i> ट	ार्च क	甲醇	208	104		in Bb
S4-9	离心废液	离心	无机杂质	44	22		间歇
C4 10	进沙京 流	或 .). 34- 3/4	甲	106	53		白田
S4-10	洗涤废液	离心洗涤	中间体IV	0.7	0.35		间歇

二、主要污染工序:

噪声:主要为破碎机、搅拌机、空压机、柴油发电机及等设备运行时产生的噪声。 废气:主要为原料药实验过程中工艺废气,药品储存、运输跑冒滴漏废气,天然 气燃烧废气,污水处理站产生的恶臭及柴油发电机废气。

固废:主要为员工生活垃圾、原料残渣、污水处理站产生的污泥、实验设备清洗水(含实验瓶)及废试剂、过期的化学试剂、检验废液、不合格产品及废包装材料、餐厨垃圾。

废水:本项目废水主要为原料药实验工艺废水;低浓废水主要为喷淋塔废水、设备清洗废水、真空设备废水、质检分析废水、车间冲洗废水、生活污水以及初期雨水等。

表三 主要污染物产生与治理措施

一、污染物产生及治理措施

(1) 废气

项目运营期间废气主要来源于实验车间工艺废气、车间跑冒滴废气、储罐区大小呼吸废气、甲类库房废气、污水处理站废气恶臭和天然气燃烧废气。

工艺废气依托现有 1 套碱水喷淋塔+石蜡油吸收塔处理后,并入车间跑冒滴漏废气处理装置(即 1 套碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔+25m 高排气筒 DA004)排放。罐区、甲类库房、污水处理站废气依托现有 1 套碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔+15m 高排气筒 DA003 排放;燃气锅炉天然气燃烧废气经现有 1 根 15m 排气筒(DA002)排放。储罐区平面布置图如下。

1号 (50m³)	2 号(30m³)	3 号(30m³)	4号(30m³)	5号(30m³)
备用	甲醇	乙酸乙酯	无水乙醇	无水乙醇
6号 (20m³)	7号(40m³)	8号(50m³)	9号(50m³)	10 号(50m³)
冰醋酸	甲醇	乙醇	乙醇	乙酸乙酯

图 3-1 储罐区平面布置图

(2) 废水

厂区东南面现建设有废水处理站 1 座,采用"多维电解+气浮+水解酸化+ 厌氧处理+CASS 工艺",设计污水处理能力为 300m³/d,废水处理站出水管道已于厂外园区污水干管碰管。现有项目实际污水量约 150m³/d,污水站剩余量 150m³/d,能满足本项目废水处理要求。但该废水处理站有一定程度老化。为解决污水处理问题,四川青木制药有限公司再建了 1 座同等处理能力(300m³/d)的废水处理站。新建废水处理站建成后,将废水引至新建污水处理站处理,同时改造老的污水站,改造完成后两个污水站交替运行。

本项目废水采取"高、低浓度废水分类处理"方式,高浓度废水主要来源于原料药生产工艺废水;低浓废水主要为喷淋塔废水、设备清洗废水、真空设备废水、质检分析废水、车间冲洗废水、生活污水以及初期雨水等。高浓度废水先经厂区污水处理站物理处理系统"多维电解+絮凝沉淀"工艺处理后,再汇同低浓度废水及预处理后的员工生活污水等一并进入污水处理站,采用"气浮+水解酸化+厌氧处理+CASS工艺"或"芬顿预处理+调节池+水解酸化池+UASB+二级 A/O+混凝沉淀"工艺处理达标后,排

入园区污水处理厂进一步处理,达到《四川省岷江、沱江流域水污染执行标准》 (DB51/2311-2016) 中"工业园区集中式污水处理厂"标准后,最终外排至岷江。

厂区东南面现建设有废水处理站 1 座,采用"多维电解+气浮+水解酸化+厌氧处理+CASS工艺",设计污水处理能力为 300m³/d,废水处理站出水管道已于厂外园区污水干管碰管。由于现有的污水站已运行 5 年多,因设备腐蚀老化(腐蚀老化较为严重部位为水解酸化池、厌氧池及多维电解器),影响处理能力和效果,同时建设单位也无法停产检修,故在现有污水站西侧,原规划污水站用地处再修建一座同等处理能力(300m³/d)的污水站作为备用,该备用污水处理站采用"芬顿预处理+调节池+水解酸化池+UASB+A/O+混凝沉淀"工艺,处理能力 300m³/d,目前已建成。

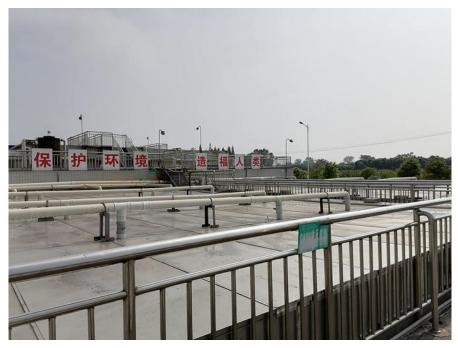


图 3-2 污水处理站 1(已建)

图 3-3 污水处理站 2 (新建)

1、已建污水处理站工艺流程

高浓度工艺废水进入污水处理站,首先经过格栅去除较大的悬浮垃圾;经隔油处理后,自流进入高浓度废水调节池,在池内加 H₂SO₄ 调节 pH 到 4~5 左右,并进行水质调节;用泵提升至高效多维电解系统,多维电解可将水中难降解有毒有机物降解为二氧化碳、水和矿物质,将不可生化有机物转化为可生化小分子有机物,提高废水的 B/C 比,可同时高效去除废水中的氨氮、总磷及色度,大大减轻了后续生化处理系统的负荷,为最终排水达标提供了有利的条件;向电解后的废水加 NaOH 调节pH 到 8~9 左右,再进入多维电解沉淀池,电解产生的 Fe²⁺与 OH·结合成具有较强絮凝作用的 Fe(OH)₂,混凝沉淀段盐分去除率可达 30%;沉淀池出水自流进入综合调节池。

低浓度废水经管网收集后,进入综合调节池,在此与多维电解处理后的高浓度废水、低浓度废水和预处理后的生活污水充分混合均质。盐分控制通过物化过程的降解去除和生化过程的低浓度废水稀释结合,达到生化处理的要求。然后提升进入气浮池,去除污水中处于乳化状态的油或微细悬浮颗粒状杂质,同时也可起到预曝气、脱色、降低化学需氧量等作用;气浮池的出水自流进入水解酸化池,将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;水解酸化处理后的废水进入涌动厌氧池(FASB),去除大部分有机物,再进入 CASS 池,

CASS 工艺可分为曝气、沉淀、滗水、闲置四个阶段,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。

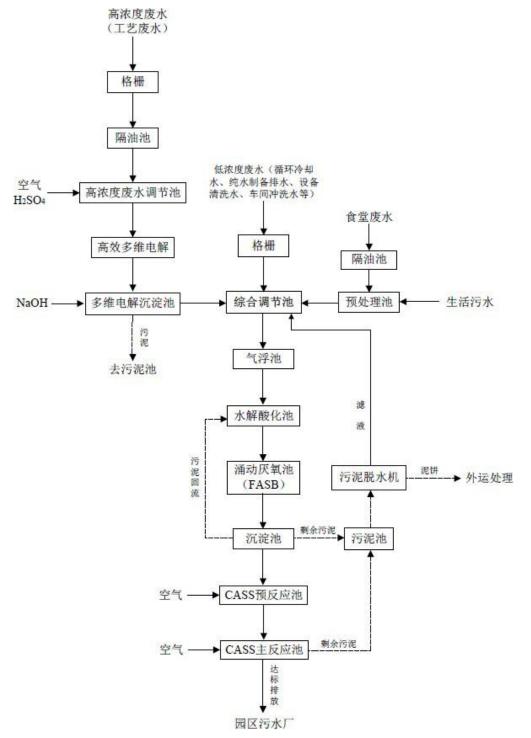


图 3-4 污水处理站工艺流程图

已建污水处理站处理工艺见上图 3-4。

①处理效果好。该系统具有较强的的生化组合工艺。

- ②运行稳定, 抗冲击负荷能力强。
- ③污泥回流消化,运行成本低。生物系统产生的污泥大部分回流消化,节省了污泥处置设施的投资,并减少了操作程序和设备,美化了工作环境,实现了可持续发展。主要设备采用国内外知名品牌,功率比常规设备低,整个系统均为高性能、自动化程度高,降低了维护保养费,这使得运行成本大大降低了。
 - ④易于操作及管理。设计工艺流程简单,设备运行稳定可靠,操作简单。
 - ⑤投资省,使用周期长。整个系统一经启动,能够长期稳定运行。
- ⑥技术先进。此工艺采用国内先进技术和设备,运行成本低,只需操作人员监管,与传统的污水站管理系统相比,具有节能,减少运行时间,减少人员班次和劳动强度等优点,适合中小型污水处理工程采用。
- ⑦安装方便,节约投资。本装置可建于绿化带、废弃道路、停车场或其他零星地块,占地面积小,投资低,安装简单方便,一次投入永久受益。

2、备用污水处理站工艺流程

新建废水处理工艺由三部分组成,分别为预处理单元、生化处理单元和深度处理单元。 预处理工艺主要针对原水进行收集、调节水质水量、高浓度废水高级氧化工艺等;生化 处理工艺主要是去除大部分有机污染物,以达到设计所需排放要求;深度处理工艺是在生 化处理工艺上进行补充,一方面增加风险控制,降低系统超标的风险;另一方面保证 系统的稳态运行。

①预处理单元

预处理工艺主要以均和水质水量,去除较大悬浮物为主,采用人工格栅+调节池 (事故池)工艺,减少后续工艺的水质冲击。另外利用事故池一座,可储存车间可能 出现的高浓度事故废水或者突然水量的增大作为缓存使用。

A、芬顿工艺

芬顿(Fenton)反应也称芬顿(Fenton)试剂法,(Fenton)试剂的实质是二价铁离子(Fe²+)、和双氧水之间的链反应催化生成•OH 自由基,具有较强的氧化能力,因而Fenton 试剂可无选择氧化水中的大多数有机物,特别适用于生物难降解或一般化学氧化难以凑效的有机废水的氧化处理。与其他传统的水处理方法相比,Fenton 氧化法具有以下特点: (1)反应速率高,在 Fe²+离子的作用下,H₂O₂ 能够迅速分解产生•OH,•OH 具有极强的得电子能力也就是氧化能力; (2)•OH 可以直接与废水

中的污染物反应将其降解为二氧化碳、水和无害物; (3)由于羟基自由基的氧化能力很强,所以反应速度快,可以在较短的反应时间内达到处理要求。

高浓度废水预处理工艺为: 芬顿氧化+混凝沉淀工艺组合。

②生化处理单元

综合调节池的原水混合后COD约3000 mg/L左右,属于中高浓度有机废水,采用 厌氧工艺,去除水中大部分有机污染物后,再进行好氧生化处理。

A、水解酸化工艺

一般厌氧发酵过程主要有三个阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段。而在水解酸化池中把反应过程控制在水解与酸化阶段,使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质,将难生物降解有机物转变为易生物降解有机物,提高污水的可生化性。通常用于生化工艺的预处理,同时由于水解酸化可以去除一部分有机污染物,减少后续处理设备的曝气量,降低污泥产率,节约能耗。污水经过水解酸化池后可以提高其可生化性,减少污泥产量,为后续好氧生物处理创造了有利条件。与传统的水解酸化工艺对比,常规的点对点布水器很容易堵塞并很难冲洗,本项目的布水器最大程度的达到布水均匀,对布水器设计了反冲洗功能,大大减少了堵塞情况。工艺总体操作简单,运行方便,无需添加任何药剂及搅拌装置,能达到更好的去除效果。

B、厌氧UASB工艺

UASB 的基本原理是:反应器主体分为上下两个区域,即反应区和气、液、固三相分离区,在下部的反应区内是沉淀性能良好的厌氧污泥床;高浓度有机废水通过布水系统均匀地从 UASB 反应器的底部引入,向上通过包含厌氧污泥的污泥床。污水厌氧反应发生在废水与厌氧污泥的接触过程,反应产生的沼气引起了内部的循环。附着和没有附着在厌氧污泥上的沼气向反应器顶部上升,碰击到三相分离器气体发射板,引起附着气泡的污泥絮体脱气。气泡释放后污泥将沉淀到污泥床的表面,气体被收集到反应器顶部的三相分离器的集气室。一些厌氧污泥会经过分离器缝隙进入沉淀区。出水 COD 的去除率可达到 70%以上,容积负荷 2~10kgCOD/(m³·d),分离后的沼气可燃烧或作为能源利用。

UASB 反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。在 UASB 反应器中最重要的设备是布水器和三相分离器,其中布水器装在设备

的底部, 保证进水的均匀性,泥水充分接触; 三相分离器安装在反应器的顶部并将 反应器分为下部的反应区和上部的沉淀区。

厌氧生物处理主要利用高效厌氧装置中存在的大量厌氧微生物的作用来降解污水中含有的溶解性有机物及部分非溶解性有机物,分解后的主要产物是: CO₂、H₂O、CH₄ 及合成厌氧微生物菌体。厌氧消化可分为四阶段: 第一阶段: 有机物在水解酸化菌的作用下转化为 H₂、CO₂、乙酸和其他有机酸以及新细胞。部分大分子有机物转化为溶于水的小分子有机物,透过细胞膜被细菌所利用。第二阶段: 由于除 H₂、CO₂和乙酸外,其他有机酸不能直接被产甲烷菌所利用,这些有机酸的代谢是首先被产氢产乙酸菌利用,转化为碳酸,H₂/CO₂和乙酸以及新细胞,从而再被产甲烷菌所利用.第三阶段: H₂/CO₂和乙酸被产甲烷菌利用而转化为 CH₄、CO₂和 H₂O以及新细胞。第四阶段: 存在一类细菌(同型产乙酸菌),该菌能将 H₂、CO₂转化为乙酸而被产甲烷菌所利用。厌氧消化中的微生物分类如下:

I 类微生物:水解酸化菌将有机物转化为H₂、CO₂、乙酸和其他有机酸。该类微生物生长速度较快,世代时间从几十分钟到数小时。代谢速度快,对环境的适应能力较强。

II 类微生物:产氢产乙酸菌将除 H₂/CO₂ 和乙酸外的有机酸转化为 H₂、CO₂ 和乙酸,从而再被产甲烷菌所利用。该类微生物生长速度较快,世代时间从几十分钟到数小时。代谢速度快,对环境的适应能力较强。

III类微生物:产甲烷菌只能利用一碳单位的有机物(如甲酸、甲醇和 H₂/CO₂等)和二碳单位的乙酸,将其转化为甲烷。该类微生物的生长速度很慢,世代时间一般为 3-5天,产甲烷菌代谢速度较慢,对环境的敏感度比其他几类菌均高。因此在通常情况下, 厌氧消化系统的启动过程即是产甲烷菌的适应和富集过程。

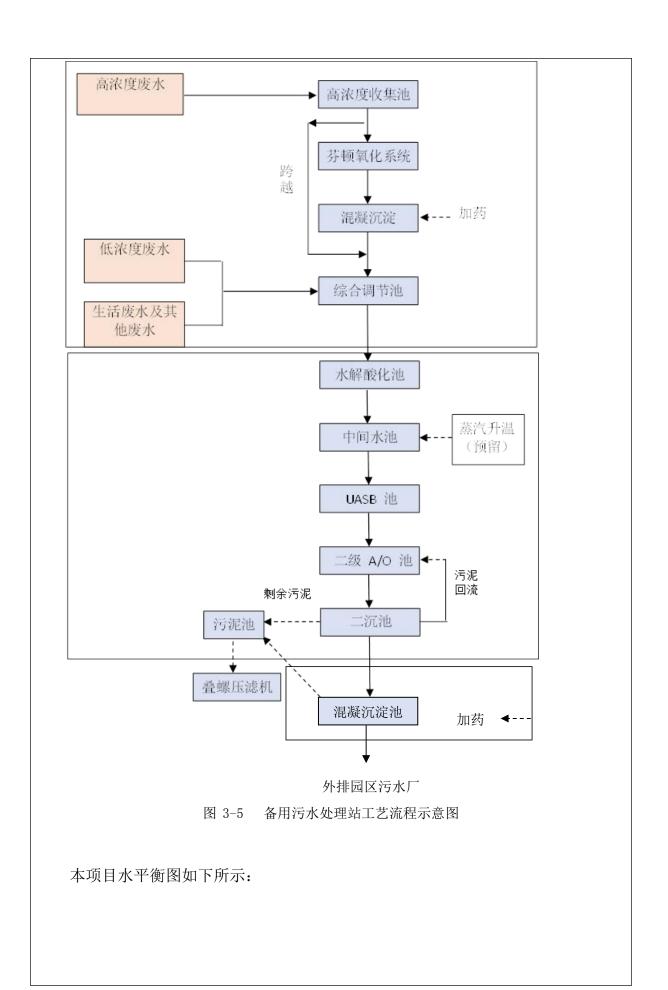
Ⅳ类微生物:同型产乙酸菌利用 H₂/CO₂合成乙酸,该类细菌可以降低污水中氢分压,从而有利于产氢产乙酸菌的代谢和产甲烷菌的生长与代谢。

C、A/O工艺

A/O 工艺法也叫缺氧-好氧工艺法, A (Anoxic)是缺氧段, O (Oxic)是好氧段。它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,所以A/O 法是改进的活性污泥法。该工艺将前段缺氧段和后段好氧段串联在一起,A段溶解氧 (DO) <0.5mg/L,O 段 DO 大于 2mg/L。在好氧段进行曝气,让活性污泥和

废水充分接触,被好氧微生物氧化为 CO₂ 和 H₂,从而去除有机物,并且在充足供氧条件下,自养菌的硝化作用将 NH₃-N (NH⁴⁺)氧化为 NO³-即去除氨氮。在缺氧段设置污泥回流,异氧菌的反硝化作用将回流的 NO₃-还原成氮气 N₂,从而达到去除总氮的目的,反硝化反应还能产生一部分碱度,以弥补好氧段硝化反应碱度的缺失。整个过程中完成了C、N、O在生态中的循环,实现污水无害化处理。好氧段活性污泥中含有大量的硝化菌同时悬浮污泥中也含有大量的硝化细菌,进行硝化作用:

 $NH_4^+ + 1.382O_2 + 1.982HCO_3$ 0.982 $NO_2^- + 0.018C_5H_7O_2N + 1.036H_2O + 1.891H_2CO_3$


硝化菌

$$NO_2^- + 0.003NH_4^+ + 0.01\ H_2CO_3\ + 0.003HCO_3^- + 0.488O$$
 0.003C₅H₇O₂N+ NO_3^{2-}

而在缺氧段由于存在大量兼性的反硝化菌,进行反硝化反应:

这样使整个系统具有较高的脱氮效果。

备用项目污水处理站工艺流程图见下图所示。

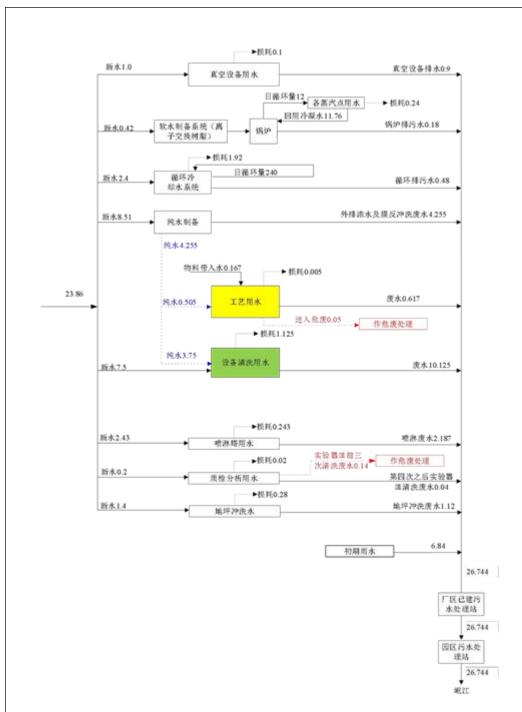


图 3-6 项目水平衡图

(3) 噪声

本项目噪声源主要为离心机、废气风机、压缩机、冷冻机、各类机泵、空调机组等。主要通过选用低噪声设备、将噪声较强的设备布置在厂房内、优化管道设计以减少管道噪声以及合理布置总图,防止噪声叠加、距离衰减等综合降噪措施来控制,以实现厂界达标。

为有效降低设备噪声以及不合理作业操作产生的瞬时强噪声对项目所在区域声

环境造成的不利影响,确保厂界外 1m 处昼间噪声值应低于 65dB(A),夜间噪声值应低于 55dB(A)。具体措施如下:

- ①设备选型上应选用先进的、噪音低、震动小的生产设备,安装时采取台基减震、橡胶减震接头以及减震垫等措施。
- ②合理布置产噪设备。建设单位在布设生产设备时,注意尽量将高噪声设备集中摆放,置于厂房内合理位置,以有效利用噪声距离衰减作用。
- ③空调系统采取水冷方式制冷,冷却剂选用环保型,空调机组位于车间内的空调机房内,机房采取密闭形式。
- ④通风设备采用低噪声型,且其吊装设备采用减振吊架、落地式安装设备采用弹 簧减振器或橡胶减振垫,进出口设有软接头,风机进出口风管处安装设消声设备,机 房门为隔声门。
 - ⑤对空压机、真空泵安装减振器,配置进排风消声器和低噪声风机。
- ⑥水泵加装减振器,进水管道设可曲挠管道橡胶伸缩接头以减小水锤冲击和水泵 振动产生噪声,连接水泵进出口的水管、进出机房隔墙处与运转设备连接的管道均采 用减振吊架。
- ⑦专人定期维护机械设备,确保其正常运转,防止设备故障形成的非正常生产噪声。

以上隔声、减振措施可使上述设备的噪声源强下降 10~15dB(A); 并且各产噪设备均置于车间内,车间对噪声的削减量在 15dB(A)以上,因此设备噪声在采取上述措施治理后可确保厂界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)的 3 类标准限值要求,实现厂界达标。

(4) 固体废物

本项目营运期产生的固废主要有:实验工艺固废、质检室废液及废试剂、废气处理装置废吸附剂、废吸附剂活性炭、空气净化系统废滤材、报废药品、废包装材料、纯水制备系统废吸附载体物、废机油和废含油抹布、污水处理站污泥、办公生活垃圾。

项目产生废物中属名录中的危险废物有实验工艺固废、质检室废液、废试剂、废 气处理装置废吸收剂、废吸附剂活性炭、空气净化系统废滤材、废包装材料、报废药品、废机油和废含油抹布,业主均委托有危废处理资质的单位统一处置。

一般固废主要为生活垃圾、纯水制备系统废吸附载体物,均由环卫部门清运。

目前污水处理站污泥暂未清掏,待清掏后业主单位按照环评及批复要求进行处置。

1、实验工艺固废

项目研发产生的生产固废主要为各实验线离心废液、洗涤废液、过滤滤渣、干燥废气冷凝液、废脱色剂活性炭、废干燥剂等,根据物料衡算,产生量为 5.266t/a,均属于危险废物(HW02 医药废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

2、质检室废液、废试剂

质检室进行中间产物或实验原料药检测时,会产生有机废液和废试剂,产生量约0.1t/a,为危险废物(HW49 其他废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

3、废气处理装置废吸收剂

废气处理装置中石蜡油吸收塔每隔 3 个月更换一次石蜡油,更换量为 5.4t/次,年产量约 21.6t/a,属于危险废物(HW02 医药废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

4、废吸附剂活性炭

本项目废气处理量为 3.56t/a,每千克活性炭吸附 0.1kg-0.4kg 废气,本环评取值 0.2kg/kg,则废活性炭的产生量为 17.8t/a,活性炭吸附塔活性炭每两个月更换 1 次,每次更换量为 2.97t,属于危险废物(HW02 医药废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

5、空气净化系统废滤材

洁净区空气净化系统的滤材主要为无纺布和棉质纤维,一般每半年更换一次,一次更换量约为 50kg,则全年更换下来的废过滤材料量为 100kg,即 0.1t/a。属于危险废物(HW02 医药废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门

进行处理, 并填好危险废物转移联单。

6、废包装材料

项目使用的化学品包装材料,尽可能由原厂家回收重复使用,有破损的包装材料和不能回收使用的包装材料集中收集,产生量约 0.5t/a,属危险废物 (HW49 其他废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

7、报废药品

本项目实验原料药为 1.11t/a,实验的原料药 70%交由总公司或者合作单位作进一步制剂研发,30%暂存于公司综合库房,作稳定性考察,考察期结束后作危废处理,产生量为 0.333t/a,属于危险废物(HW02 医药废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

8、纯水制备系统废吸附载体物

纯水制备系统产生的废 RO 膜、废活性炭,产生量为 0.1t/a,由环卫部门收集处理。

9、废机油和废含油抹布

项目设备检修、维护时将产生少量废机油和废含油抹布等危险废弃物,产生量分别约为 0.1t/a 和 0.01t/a。废机油、废含油抹布属于危险废物(HW08 废矿物油与含矿物油废物),此类废物应及时收集、密封于车间专门设置的收集器具或收集袋,定时在当地环保行政主管部门的监督下交由有危险废物处理资质的部门进行处理,并填好危险废物转移联单。

10、污水处理站污泥

项目废水处理过程中产生一定量的污泥,本项目污水处理单独产生污泥量约为5.0t/a。由于物料走向的复杂性,环评要求:污水处理站污泥暂按照危险废物进行管理。生产期间,将污泥送有资质的检测部门严格按照《危险废物鉴别技术规范》和《危险废物鉴别标准》进行检测鉴别,明确其性质。如为危废,则按规定送有资质的危废单位处置;如为一般固废,可交由环卫部门送城市垃圾填埋场处理。

11、生活垃圾

本项目实施后,员工从现有员工中调配,不新增员工。因此,不新增生活垃圾量。 由园区环卫部门统一收集处理。

经上述分析后,运营期固废产生治理及排放情况见下表。

表3-1 固体废物产生及排放情况

名称	产生量(t/a)	污染物类别	危废代码	处置措施
实验工艺固废	5. 266	危废(HW02 医药废物)	271-001-02	交危废资质单位处理
质检室废液、废 试剂	0. 1	危废(HW49 其他废物)	900-047-49	交危废资质单位处理
废气处理装置 废吸收剂	21. 6	危废(HW02 医药废物)	271-004-02	交危废资质单位处理
废吸附剂活性炭	17.8	危废(HW02 医药废物)	271-004-02	交危废资质单位处理
空气净化系统废 滤材	0. 1	危废(HW02 医药废物)	271-004-02	交危废资质单位处理
废包装材料	0. 5	危废(HW49 其他废物)	900-041-49	交危废资质单位处理
报废药品	0. 333	危废(HW02 医药废物)	271-005-02	交危废资质单位处理
纯水制备系统 废吸附载体物	0. 1	一般固废	/	环卫部门收集处理
废机油	0. 1	危废(HW08 废矿物油与含矿物油废物)	900-214-08	交危废资质单位处理
废含油抹布	0.01	危废(HW08 废矿物油与含矿物油废物)	900-249-08	交危废资质单位处理
污水处理站污泥	5. 0	/	/	经鉴别如为危废,则接 规定送有资质的危废 单位处置;如为一般固 废,可交由环卫部门收 集处理

表3-2 危险发物产生及处置情况汇总表

序号	危险废物	危险废	危险废物	产生量	产生工序	形态	产废	危险	污染防
 \ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	名称	物类别	代码	(t/a)	及装置	心心	周期	特性	治措施
1	实验工艺 固废	HW02	271-001-02	5.266	实验过程	液态	每天	T, I	
2	质检室废液、废 试剂	HW49	900-047-49	0.1	质检	液态	每天	Т, І	
3	废气处理装置 废吸收	HW02	271-004-02	21.6	废气处理 系统	固体	2 个月	T, I	闭容器收集,暂存
4	废吸附剂 活性炭	HW02	271-004-02	17.8	废气处理 系统	固体	2 个月	T, I	于危险废物暂存间
5	空气净化系统废滤材	HW02	271-004-02	0.1	空气净化 系统	固体	1 年	T, I	(630m²), 委托有资
6	废包装材料	HW49	900-041-49	0.5	药品包装	固体	每天	Т, І	质的单位
7	报废药品	HW02	271-005-02	0.333	实验产品	固体	每天	T, I	处理
8	废机油	HW08	900-214-08	0.1	推护、保养	液态	半年	Т, І	
9	废含油抹布	HW08	900-249-08	0.01	维护、 保养	固体	半年	Т, І	

项目运行过程中产生的危险废物应采用专用收集桶分类收集后,送危废暂存间进行分区暂存;同时,危险废物暂存、管理应按照《危险废物贮存污染控制标准》(GB18597-2001)的要求,装载危险废物的容器必须完好无损、满足强度要求,并粘贴危险废物标签。

二、环保投资

本项目总投资为 800 万元,其中环保投资为 620 万元,占总投资的 77.5%,具体环保治理措施及投资清单详见表 3-3。

表 3-3 环保设施一览表

				环评	实际
项	污染源	环保措施	实际环	投资	投资
目	力 架 源	小休 <u>捐</u> 他	保措施	金额	金额
				(万	(万

					元)	元)
			施			
			期间生活污水产生总量较小,由于本			
			项目是在青木制药厂区内施工,项目			
		 生活污水	厂区内已建有完善的污水处理设施,	一致	/	/
		上伯行水 	施工期间生活污水利用厂区内已建	玖		
			设施进行处理后达标排入污水处理			
	施工		厂进一步处理,对周围环境的影响较			
	期		小			
			施工废水主要来自砂石料冲洗废水、			
		施工废水	机械冲洗废水等。施工单位应设临时		/	/
			沉淀池,废水经沉淀处理后回用,池	一致		
		加巴工/交/八	底泥沙作为固废运往建筑垃圾堆放	玖	/	/
废			场。施工废水禁止未经处理直接排			
水			放。			
治			食堂产生的含油废水经隔油池处理			
理		生活污水(含食堂废水)	后,与其他生活污水先经预处理池处			
			理后,再进入污水处理站综合废水调	一致		
			节池,处理达标后排入园区污水管			
			网。			
			工艺废水为高浓度废水,先经厂区污			
	运营		水处理站预处理(多维电解或芬顿)		500	500
	期		工艺处理后,再汇同低浓度废水等一		000	
		实验车间工艺	并进入污水处理站综合废水调节池,			
		水、设备及其他	处理达标后排入园区污水管网。实验	一致		
		器具清废水	器皿前三次清洗废水作为危废交由			
			有危废处置资质的单位处置, 第四次			
			之后实验器皿清洗废水进入污水处			
			理站的综合废水调节池, 处理达标后			

			排入园区污水管网。设备及其他器具			
			清洗用水进入污水处理站的综合废			
			水调节池,处理达标后排入园区污水			
			管网。			
		公用工程真空	本项目循环冷却水循环使用, 定期补			
		设备废水、锅炉	充,定期排放,进入污水处理站的综			
		排污水、循环冷	合废水调节池,处理达标后排入园区			
		却排污水、纯水	污水管网。喷淋塔废水、质检分析废	<i>Zh</i> r		
		制备排水、喷淋	水、车间冲洗废水、真空泵废水和纯	一致		
		塔废水、质检分	水制备浓水进入污水处理站的综合			
		析废水、车间冲	废水调节池处理达标后排入园区污			
		洗废水	水管网。			
			场地地坪采取地面硬化并设有防渗			
			结构层,同时在实验车间、仓库区四			
			周设置截排水沟;实验车间、仓库雨			
			水收集系统设置初期雨水切换阀,初			
		初期雨水	期雨水收集后进入厂区已建事故应	<i>Zh</i> r		
			急池(有效容积 300m³)中暂存,后	一致		
			分批排入污水处理站综合废水调节			
			池处理。后期雨水经雨水切换阀切换			
			后直接排入厂雨水管网, 之后再进入			
			园区雨水管外排。			
			湿法作业; 打围作业; 硬化道路; 设			
 废			置冲洗设施; 配齐保洁人员; 及时清			
仮	施工	扬尘	扫施工现场。不准车辆带泥出门不准	一致		
治	川 旭 土	701年	运渣车辆冒顶装载; 不准高空抛洒建	以	4	4
	797		渣不准现场搅拌混凝土;不准现场积			
			水;不准现场焚烧废弃物。			
		施工车辆及施	本项目施工规模较小,因此对其不加	一致		

	工机械燃油废	处理就可达到相应的排放标准。对			
	气	此,本环评要求在施工期内多加注意			
		施工设备的维护,使其能够正常的运			
		行,而可以避免施工机械因病态作业			
		而使产生的废气超标的现象发生。			
		环评要求应尽量使用环保油漆及涂			
		料;公共装修各类油漆使用量较大时			
	装饰工废气	应尽量减少油漆的储存量和储存时	一致		
		间,根据装修进度分批购买;油漆使			
		用完后,应该对油漆桶及清运、处理。			
		项目所产生的以上工艺废气全部经			
		设备顶部自带的升气管引出后依托			
		现有工艺废气处理装置(即碱水喷淋			
	实验车间工艺	+石蜡油吸收)处理后,与车间跑冒	75hr	,	,
	废气	滴漏废气一起依托现有车间废气处	一致	/	/
		理装置(碱水喷淋+石蜡油吸收+活性			
		炭吸附) 处理达标后,通过 25m 高排			
		气筒 (DA004) 排放			
		本项目考虑将实验车间进行全密闭			
		(项目实验车间面积约 700㎡, 高约			
 		5m,空间量约 3500m³),并保持微负			
		压,将车间内的绝大部分跑冒滴漏废			
	车间跑冒滴废	气通过车间抽排风系统送至车间废	一致	/	/
	气	气处理装置(采用碱水喷淋塔+石蜡	以	/	/
		油吸收塔+活性炭吸附塔,风量			
		20000m³/h, 处理效率 90%) 处理后经			
		25m 排气筒 (DA004) 排放,将车间			
		无组织排放变为有组织排放。			
	储罐区大小呼	依托现有储罐顶部呼吸排气阀处设	一致	/	/
·	·			· · · · · · · · · · · · · · · · · · ·	

関的排气管道,将"大小呼吸"过程 中排放的有机废气经管道引至污水 处理站旁废气处理装置。与甲类库房 有机废气、污水处理站署具一起经现 有碳水喷淋+石蜡油吸收+活性炭吸 附工艺处理达标后。由 15m 高排气筒 (DA003)排放。 废气通过仓库相排风系统送至现有 污水处理站旁废气处理装置(采用碱 水喷淋塔+石蜡油吸收塔+活性炭吸 附塔)处理局经 15m 气筒(DA003)排放。 对于污水处理站产生的恶臭气体,本 次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/0 池、污泥 污水处理站废 池等采用钢筋混凝土池盖封顶、池盖 气恶臭 上預留臭气收集口,收集的恶臭气体,停托现有碱水喷淋+石蜡油吸附;活 性炭吸附装置处理后,由 15m 高排气 筒(DA003)排放。 本項目所需蒸汽依托现有锅炉,锅 大然气燃烧废 (通过1根15m 有度 (DA002) 排放。本項目所需蒸汽依无现有锅炉、锅 大然气燃烧废 (通过1根15m 市 (10 (DA002) 排放。本項目依托 该锅炉、不变动。 東 東 加工 机械、运输车辆 市 市 市 市 中 年 平 百 日 日 日 日 日							
处理站旁胺气处理装置,与甲类库房 有机废气、污水处理站恶臭一起经现 有破水喷淋+石蜡油吸收+活性炭吸 附工之处理达标后,由15m高排气筒 (DA003)排放。 废气通过仓库抽排风系统送至现有 污水处理站旁胺气处理装置(采用碱 水喷淋烙+石蜡油吸收烙+活性炭吸 附堵)处理后经15m 气筒(DA003)排放。 对于污水处理站产生的恶臭气体,本 次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/O 池、污泥 污水处理站废 气恶臭 上预留臭气收集口,收集的恶臭气体 依托现有破水喷淋+石蜡油吸附+活 性炭吸附装置处理后,由15m高排气 筒(DA003)排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有1台4t/h的燃气锅炉,锅 天然气燃烧废 有。0A003)排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有1份4t/h的燃气锅炉,锅 大燃气燃烧废气通过1根15m 排气筒(DA002)排放。本项目依托 该锅炉,不变动。			吸废气	置的排气管道,将"大小呼吸"过程			
有机废气、污水处理站恶臭一起经现有碱水喷淋+石蜡油吸收+活性炭吸附工艺处理达标后,由 15m 高排气筒 (DA003) 排放。 废气通过仓库抽排风系统送至现有污水处理站旁废气处理装置(采用碱水喷淋结+石蜡油吸收塔+活性炭吸附塔) 处理后经 15m 气筒 (DA003) 排放。 对于污水处理站产生的恶臭气体,本次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/O 池、污泥污水处理站废 池等采用钢筋混凝土池盖封顶,池盖气感,是要 上预留臭气收集口,收集的恶臭气体依托现有碱水喷淋+石蜡油吸附+活性炭吸附装置处理后,由 15m 高排气筒 (DA003) 排放。 本项目所需蒸汽依托现有锅炉,现有厂内设有 1 台 4 t/h 的燃气锅炉,锅厂放金、水源目所需蒸汽依托现有锅炉,锅厂,以每日运行时间为 24h,年运行时间到 300d,天然气燃烧废气通过 1 根 15m 排气筒 (DA002) 排放。本项目依托透锅炉,不变动。				中排放的有机废气经管道引至污水			
有碳水喷淋+石蜡油吸收+活性炭吸附工艺处理达标后,由 15m 高排气筒 (DA003) 排放。				处理站旁废气处理装置,与甲类库房			
附工艺处理达标后,由 15m 高排气筒 (DA003) 排放。 废气通过仓库抽排风系统送至现有 污水处理站旁废气处理装置(采用碱 水喷淋塔+石蜡油吸收塔+活性炭吸 一致 / / 解) 处理后经 15m 气筒 (DA003) 排放。 对于污水处理站产生的恶臭气体,本 次通过对主要的产臭设施如调节池、 水解酸化池 UASB 池、A/O 池、污泥 池等采用钢筋混凝土池盖封顶,池盖 上预留臭气收集口,收集的恶臭气体 依托现有碱水喷淋+石蜡油吸附+活性炭吸附装置处理后,由 15m 高排气 筒 (DA003) 排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有 1 台 4t/h 的燃气锅炉,锅 厂内设有 1 台 4t/h 的燃气锅炉,锅 厂内设有 1 台 4t/h 的燃气锅炉,锅 厂有设有,在 1 台 4t/h 的燃气锅炉,锅 上颌(DA002) 排放。本项目依托 该锅炉,不变动。 噪 施工 机械、运输车辆 合理布置平面,合理安排施工时间及 厂房,文明施工等				有机废气、污水处理站恶臭一起经现			
(DA003) 排放。 废气通过仓库抽排风系统送至现有 污水处理站旁废气处理装置(采用碱 水喷淋塔+石蜡油吸收塔+活性炭吸 小喷淋塔+石蜡油吸收塔+活性炭吸 一致 // 附塔)处理后经15m 气筒 (DA003) 排放。 对于污水处理站产生的恶臭气体,本 次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/0 池、污泥 污水处理站废 一等采用钢筋混凝土池盖封顶,池盖 上预留臭气收集口,收集的恶臭气体 依托现有碱水喷淋+石蜡油吸附+活 性炭吸附装置处理后,由 15m 高排气 筒 (DA003) 排放。 本项目所需蒸汽依托现有锅炉,锅 厂内设有1台4t/h 的燃气锅炉,锅 厂大然气燃烧废 气 300d,天然气燃烧废气通过1根15m 排气筒 (DA002) 排放。本项目依托 该锅炉,不变动。 一致 一个致 一个致 一个致 一个致 一个致 一个致 一个致 一个致 一个致				有碱水喷淋+石蜡油吸收+活性炭吸			
废气通过仓库抽排风系统送至现有 污水处理站旁废气处理装置(采用碱 水喷淋塔+石蜡油吸收塔+活性炭吸 附塔)处理后经 15m 气筒(DA003)排放。 对于污水处理站产生的恶臭气体,本 次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/0 池、污泥 污水处理站废 气恶臭 上预留臭气收集口,收集的恶臭气体 依托现有碱水喷淋+石蜡油吸附+活 性炭吸附装置处理后,由 15m 高排气 筒(DA003)排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有 1 台 4 t/h 的燃气锅炉,锅 天然气燃烧废 均 与运行时间为 24h,年运行时间				附工艺处理达标后,由 15m 高排气筒			
一致				(DA003) 排放。			
甲类库房废气 水喷淋塔+石蜡油吸收塔+活性炭吸 一致				废气通过仓库抽排风系统送至现有			
附塔)处理后经 15m				污水处理站旁废气处理装置(采用碱			
「一致 「一			甲类库房废气	水喷淋塔+石蜡油吸收塔+活性炭吸	一致	/	/
对于污水处理站产生的恶臭气体,本次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/0 池、污泥 池等采用钢筋混凝土池盖封项,池盖 上预留臭气收集口,收集的恶臭气体 依托现有碱水喷淋+石蜡油吸附+活性 炭吸附装置处理后,由 15m 高排气筒 (DA003) 排放。 本项目所需蒸汽依托现有锅炉,现有厂内设有1台4t/h的燃气锅炉,锅炉每日运行时间为24h,年运行时间 300d,天然气燃烧废气通过1根15m排气筒(DA002)排放。本项目依托该锅炉,不变动。 「噪 施工 机械、运输车辆 合理布置平面,合理安排施工时间及工序,文明施工等				附塔) 处理后经 15m			
次通过对主要的产臭设施如调节池、水解酸化池 UASB 池、A/O 池、污泥				气筒(DA003)排放。			
水解酸化池 UASB 池、A/O 池、污泥				对于污水处理站产生的恶臭气体,本			
一致				次通过对主要的产臭设施如调节池、			
一致				水解酸化池 UASB 池、A/O 池、污泥			
 气恶臭 上预留臭气收集口,收集的恶臭气体 依托现有碱水喷淋+石蜡油吸附+活 性炭吸附装置处理后,由 15m 高排气 筒 (DA003) 排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有 1 台 4t/h 的燃气锅炉,锅 天然气燃烧废 有 第000d,天然气燃烧废气通过 1 根 15m 排气筒 (DA002) 排放。本项目依托 该锅炉,不变动。 噪 施工 机械、运输车辆 合理布置平面,合理安排施工时间及 工序,文明施工等 			污水处理站废	池等采用钢筋混凝土池盖封顶,池盖	<i>— ₹\t</i>	/	
性炭吸附装置处理后,由 15m 高排气 筒 (DA003) 排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有 1 台 4t/h 的燃气锅炉,锅 厂内设有 1 台 4t/h 的燃气锅炉,锅 炉每日运行时间为 24h,年运行时间 300d,天然气燃烧废气通过 1 根 15m 排气筒 (DA002) 排放。本项目依托 该锅炉,不变动。 □			气恶臭	上预留臭气收集口,收集的恶臭气体	玖	/	
(DA003) 排放。 本项目所需蒸汽依托现有锅炉,现有 厂内设有 1 台 4t/h 的燃气锅炉,锅 厂内设有 1 台 4t/h 的燃气锅炉,锅				依托现有碱水喷淋+石蜡油吸附+活			
本项目所需蒸汽依托现有锅炉,现有				性炭吸附装置处理后,由 15m 高排气			
				筒 (DA003) 排放。			
天然气燃烧废 炉毎日运行时间为 24h, 年运行时间 300d, 天然气燃烧废气通过 1 根 15m 排气筒 (DA002) 排放。本项目依托 该锅炉, 不变动。 / 噪 施工 机械、运输车辆 骨型布置平面,合理安排施工时间及 中 関 中 東				本项目所需蒸汽依托现有锅炉,现有			
「				厂内设有 1 台 4t/h 的燃气锅炉,锅			
气 300d, 天然气燃烧废气通过1根15m 排气筒(DA002)排放。本项目依托 该锅炉,不变动。 噪 施工 机械、运输车辆 合理布置平面,合理安排施工时间及 平 県声 一致 / 工序,文明施工等			天然气燃烧废	炉每日运行时间为 24h, 年运行时间	— 软	/	
该锅炉,不变动。 噪 施工 机械、运输车辆 合理布置平面,合理安排施工时间及 一致 上京,文明施工等			气	300d, 天然气燃烧废气通过1根15m	玖		
「中華 「中華 中華 中華 中華 中華 中華 中				排气筒 (DA002) 排放。本项目依托			
声 期 噪声 工序,文明施工等 /				该锅炉,不变动。			
声 期 噪声 工序,文明施工等	噪	施工	机械、运输车辆	合理布置平面,合理安排施工时间及	—- ∑ tr		,
治 运营 各类设备噪声 主要通过选用低噪声设备、将噪声较 一致 3 3	声	期	噪声	工序, 文明施工等			/
	治	运营	各类设备噪声	主要通过选用低噪声设备、将噪声较	一致	3	3

理	期		强的设备布置在厂房内、优化管道设			
			计以减少管道噪声以及合理布置总			
			图,防止噪声叠加、距离衰			
			等综合降噪措施来控制,以实现厂界			
			达标。			
			施工产生的废料首先应考虑废料的			
			回收利用,对钢筋、钢板、木材等下			
			角料可分类回收,交废物收购站处;			
			对不能回收建筑垃圾,如混凝土废			/
	** -	建筑废料	料、含砖、石、砂的杂土等应集中堆	一致	/	
	施工		放,定时清运到政府部门指定的建筑			
	期		垃圾堆放场,严禁随意倾倒、填埋,			
			从而可以避免工程废料造成二次污			
			染。			
		4. 江 1. 17	袋装收集后,及时外运至环卫部门指	The	,	,
固		生活垃圾	定地点处置	一致	/	/
废		工艺固废、报废				
处		药品、废气处理				
理		装置废吸收剂、	此类废物应及时收集、密封于车间专			
		度吸附剂活性	门设置的收集器具或收集袋,定时在			
		炭、空气净化系	当地环保行政主管部门的监督下交	75hr	50	50
) ±±	·	由有危险废物处理资质	一致	50	50
	运营	室废液、废试	部门进行处理填好危险废物转移联			
	期	剂、废包装材	单。			
		料、废机油和废				
		含油抹布				
		纯水制备系统	九 环 开 如 门 小	, \(\subseteq \subseteq \)	/	
		废吸附载体物、	由环卫部门收集处理	一致	/	/
		生活垃圾	由环卫部门收集处理	一致	/	
-						

		污水处理站污 泥	送有资质的危废单位处置	一致	/	/
地下水治理	运 期	理站等,主要针对 处理站及相关污力 ①车间地面、甲芬 采用高密度聚乙烷 深不小于 300mm。上土工布以上设置 外线直线照射。 ≪1×10 ⁻⁷ cm ②污水管河,应加强下管 防爆材料,防止发 埋地管道大约土工布+1.	已建公辅设施并新建甲类库房、污水处对本次改建车间、新建甲类库房、污水水水管网进行重点防渗处理。具体防渗措施如下:	一	50	50
环境风险防范措施	生产车间等地面进行重点防渗,其防渗技术要求为:等效粘土防渗层 Mb≥6.0m,渗透系数≤1×10 ⁻⁷ cm/s。 按《建筑灭火器的配置设计规范》,在生产区配置消防栓、各种手提式、推车式的 CO₂、干粉、泡沫等灭火器,安装避雷针和火灾自动报警装置;设置防火警示标志、禁止明火。事故应急池、危废暂存间、危化品仓库、污水处理站等进行地面重点防渗,其防渗技术要求为:等效粘土防渗层 Mb≥6.0m,渗透系数≤1×10 ⁻⁷ cm/s。 工程楼、锅炉房、循环水站、综合仓库等地面进行一般防渗处理采用等效粘土防渗层 Mb≥1.5m,渗透系数≤1×10 ⁻⁷ cm/s。一		一致	10. 0	10.0	

	座 300m³ 事故应急池及相关收集管道,厂内雨、污管网入口必		
	须设置闸门,发生事故时立即关闭出厂雨、污管道,以杜绝事		
	故废水外流,加强事故应急水池、各环保设施的日常维护工作。		
	生产车间设置有毒、可燃气体报警系统; 并备有防毒面具、抢		
	救设施等。应急预案及管理措施建设,建立环境风险应急联防		
	机制;建立气源波动应急措施系统;加强车间的安全管理,制		
	定严格的岗位责任制度,安全操作注意事项等制度。		
	环境监测	3	3
合计(万元)			620

图 3-7 事故应急池

表四 环评结论及环评批复

一、评价结论

(一)项目概况

根据上表所述,同时根据该公司发展需求,四川青木制药有限公司拟投资 800 万元建设"四川青木制药有限公司实验室及环保设施技改项目"(以下简称"本项目"或"项目")。本项目实验的原料药为甲磺酸乐伐替尼、达克替尼、盐酸尼卡地平、酒石酸去甲肾上腺素,年实验的原料药共计1.11t/a,实验的目的主要是进行工艺放大工艺优化、提高原料药收率,本项目实验的原料药不作为原料药销售,不涉及原料药生产。本项目实验的原料药 70%交由总公司或者合作单位作进一步制剂研发,30%暂存于公司综合库房作稳定性考察,考察期结束后作危废处理。

(二)产业政策的符合性

根据《产业结构调整指导目录(2019 年本)》,本项目属于"鼓励类"中"第十三项 医药"中"第 1 条 拥有自主知识产权的新药开发和生产,天然药物开发和生产,满足我国重大、多发性疾病防治需求的通用名药物首次开发和生产,药物新剂型、新辅料、儿童药、短缺药的开发和生产,药物生产过程中的膜分离、超临界萃取、新型结晶、手性合成、酶促合成、连续反应、系统控制等技术开发与应用,基本药物质量和生产技术水平提升及降低成本,原料药生产节能降耗减排技术、新型药物制剂技术开发与应用"。同时本项目建设不属于国土资源部国家发展和改革委员会"关于发布实施《限制用地项目目录(2012 年本)》和《禁止用地项目目录(2012 年本)》的通知"规定的项目。

同时本项目经眉山市东坡区经济和信息化局以川投资备【2020-511402-27-03-434846】 JXQB-0046号文件出具了本项目的备案通知书。因此,本项目符合国家产业政策。

(三) 项目规划符合性分析

1、与《眉山市城市总体规划(2017-2035)》的符合性

眉山市城市总体规划(2017-2035) 共分为三个层次,市域、规划区和中心城区。 其中,市域范围包括眉山市全部行政辖区,总面积约 7186 平方公里;规划区范围包括东坡区、彭山区全部行政辖区,总面积约 1794 平方公里;中心城区范围包括东坡区和彭山区的核心城区,东至岷江东路和富牛大道,西至工业大道,南至 G351,北 至岷江二桥引道, 总面积约 386 平方公里。

市域城镇体系规划:坚持"对接区域、突出重点"的空间战略,强调"中心聚集"的理念,规划在眉山市域构建"三轴两带一片"的城镇空间结构。围绕"双七双五"产业,壮大电子信息、新能源新材料、生物医药等高端成长型产业,提升农产品及食品加工、机械及高端装备制造、精细化工等传统优势产业,培育发展人工智能、数字经济、智能经济、分享经济等未来产业和新经济。基于"三轴两带一片"的市域城镇空间结构的,引导重点产业园区向城镇集聚区和主要发展轴线布局,促进产业升级和产城融合。在市域范围内形成 11 个重点工业园区(包括经开西区(原经开新区和原金象园区)、经开东区(原中国泡菜城)、四川彭山经济技术开发区、天府新区视高区域、谢家产业园区、甘眉产业园区、眉山机械产业园区等7个核心产业园,青神工业开发区、洪雅工业园区、丹棱工业园区、仁寿文林工业园等4个县级重点工业园以及预留的空港经济区)、4个重点物流园区(多悦物流园、青龙物流园、文林物流园、青神物流园)和5个重点农业片区(包括中国泡菜城、中国竹编艺术城、眉山天府花海观光农业示范园区、岷江现代农业示范园区和四川省现代粮食产业仁寿示范园区)。

本项目位于眉山市经开区东区园区内,属于眉山市市域城镇体系规划范围内规划 范围内,本项目占地属于工业用地,与市域城镇体系规划定位相符。

因此,本项目建设符合眉山市城市总体发展规划。

2、与园区规划符合性分析

本项目位于眉山经开区东区规划范围内,眉山经济开发区东区(即岷江东岸(东坡)工业发展集中区)是由中共眉山市东坡区委、眉山市东坡区人民政府批准确定的工业发展集中区,重点发展机械电子、轻纺、医药化工、造纸包装产业。园区总体规划面积 10.7 平方公里。

根据原四川省环保局(现四川省环保厅)批复的《关于〈岷江东岸(东坡)工业集中区规划环境影响报告书〉的审查意见》(川环函[2009]1103号): "岷江东岸(东坡)工业集中区(即眉山经济开发区东区)是由中共眉山市东坡区委、眉山市东坡区人民政府批准确定的工业发展集中区,重点发展机械电子、轻纺、医药化工、造纸包装产业。"项目与眉山经济开发区东区规划环评及其审查意见的符合性分析见下表。

表 4-1 项目与园区规划环评及审查意见的符合性分析					
类别	园区规划环评及审查意见要求	本项目	符合性		
产业定位	重点发展机械电子、轻纺、医药化工、造纸包装产业;不宜引入合成氨、煤化工、天然气化工大型化工;造纸产业以再生造纸企业为主,不得引入化学制浆造纸、化机制浆造纸企业。	本项目为原料药 实验项目	符合		
入园企业环境门槛	鼓励发展产业: 在用水、节水、排水设计等方面达到国内先进水平; 清洁生产标准达到过优于国家先进水平的项目;(2) 与园区相配套产业,企业效益明显,对区域不造成明显污染,遵循清洁生产及循环经济的项目。 禁止发展产业:制革、印染、电镀、化学纸浆造纸、化学机械制浆造纸、酿造等废水排放量大且难于处理的企业。(2) 不符合国家产政策的企业; (3)技术落后,项目清洁生产水平不能达到行业清洁生产标准二级标准要求或低于全国同类企业平均污渍生产水平的项目;(4)国家明令禁止的"十五小"、"五小"企业及工艺设备落后、产品滞销、污染严重,且污染物不能行有效治理的项目。	本项目遵循清洁 生产及循环经济 要求,不属于禁止 发展产业。	符合		
预防或减 轻不利环 境影响对 策措施	1、废气治理措施 ①园区不宜引入合成氨、煤化工、天然气化工等大型化工,造纸行业以再生造纸企业为主,不得引入化学制浆造纸,化机制浆造纸企业。 ②园区内生产企业仍以煤为主,锅炉必须采用低硫煤,并采取脱硫措施(脱硫率必须达到90%以上)或将煤气作为能源。 ③划定城镇规划集中居住区周边500m范围内为禁煤区,该区域内禁止燃煤主的企业入驻。	本项目不属于禁止发展产业。企业位于工业园区内不属于规划确定的禁煤区。目前企业建4t/h燃气锅炉,符合园区规划。	符合		

	项目废水经自建	
	污水处理站处理	
	达《污水综合排放	
	标准》GB8978	
	-1996) 三级标准	
	(缺失的指标达	
	《化学合成类制	
	药工业水污染物	
	排放标准》	
	(GB21904- 2008)	
2、废水处理措施	表 2 限值要求),	
①由于受到岷江干流评价河段水环境容量的制约,	氯化物达《四川省	
枯水期园区必须根据岷江干流流量变化进行限产。	水污 染 物 排	
②园区废水处理应采取分散与集中相结合的方式,	放 标 准》	符合
由入区企业自行处理达到三级排放标准或相应的行	(DB51/190-93)W	
业排放标准后,再进入污水处理厂进行集中处理。	级标准要求后,排	
③区域内不能引入制革、电镀、印染等行业。	入园区污水处理	
	厂进一步处理达	
	到《四川省岷江、	
	沱江流 域 水 污	
	染 执行标准》	
	(DB51/2311-2016	
)	
	"工业园区集中	
	式污水处理厂"标	
	准后,最终外排至	
	岷江。	
3、固废处置措施	从产品的源头及	符合
①一般工业固废入园企业应本着"三化"的原则(资	生产过程中控制	11) 🗖

源化、无害化、减量化),采用清洁的生产工艺,从产品的源头及生产过程中控制固废的产生量,加强固废的资源化综合利用。入园企业的工业固废堆放场选址、设计、建设必须满足《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)中的有关规定。

②危险废物:项目区入驻企业会有危险废物产生, 危险废物的种类和数量与拟引进项目的生产性质及 工艺有关。本着"谁污染,谁治理"的原则,由企 业按照国家有关规定进行安全处置,或送有资格的 处置单位进行集中处置,严禁随意倾倒或混入生活 垃圾和一般固废中。涉及危险废物的企业,固废填 埋场应满足《危险废物填埋污染控制标准》 (GB18598-2001)的有关规定。

③生活垃圾:近照有关规划,在区内设有垃圾桶, 园生活垃圾采用"生活垃圾站一专用垃圾运输 车一城市垃圾处理厂"的收集方式,由市政环卫部 门统一运至眉山市城市垃圾填埋场集中处置。 固废的产生量;危险废物暂存间设计、建设满足《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)中的有关规定,危废统一交由资质单位收集处置;生活垃圾由环卫部统一收集置。

综上,本项目不属于眉山经济开发区东区禁止发展产业,在园区产业定位、入园 企业环境门槛、环境影响减缓措施等各方面均符合规划环评和环评审查意见的要求。 项目与眉山市经济开发区东区规划相符。

3、项目用地规划符合性分析

本项目在四川青木制药有限公司现有制剂车间内改造建设及厂区预留用地内建设,不新增占地。四川青木制药有限公司用地选址于 2011 年 10 月取得了四川经济开发区东区管理委员会出具的建设项目选址意见书(选字第 MJDA2011-015 号),该文件指出"本建设项目符合城乡规划要求";并且取得了土地证(川(2017)东坡区不动产权第 0000233 号)。

因此,项目用地符合当地用地规划。

(四)项目选址合理性及外环境相容性分析

本项目位于眉山市东坡区眉山市经济开发区东区顺江大道南段 55 号四川青木制药有限公司现有厂区内,与园区主干道顺江大道相邻,可通过成雅高速公路与各工业区、物流基地便捷地进行联系。园区内道路、水、电、气等基础设施完备,项目具备较好的建设环境。

根据现场踏勘,项目厂区北侧紧邻四川海思科制药有限公司眉山分公司(化学原料药生产);项目厂区东北侧38~400m 范围内分布有永江村居民约89户;项目厂区东南面85~300m 范围内分布有永江村居民约35户(厂区污水处理站边界与东南面最近居民距离为101.83m,测绘结果见附件);项目厂区南侧紧邻四川省绿贝尔精细化工科技有限公司(游离甲醛交联剂、催化剂生产)、四川省集坤特种设备有限公司(人防防护设备生产);项目厂区西面紧邻顺江大道,西面90m处为砂石厂,西面520m处为岷江;项目厂区西北面98m处为四川致味食品有限公司(蔬菜系列腌制食品生产,其腌制池距离本项目厂界220m,且未提出划定大气防护距离及卫生防护距离的要求)。项目所在区周围评价范围内无自然保护区、文物古迹、风景名胜区、饮用水源保护区等特定的环境敏感目标。

本项目生产过程中主要将产生生产废水、生活污水、噪声、固废、废气等污染物, 通过采取合理有效的污染防治措施,不会对周围环境产生明显的不利影响。

因此,本项目用地符合当地规划,区域具有一定的环境容量,与外环境较为相容, 不存在环境制约因素,选址合理。

(五)质量现状

(1)该地区 PM₁₀、SO₂、CO、NO₂、O₃ 年均值均满足《环境空气质量标准》 (GB3095-2012)二级标准要求,PM2.5 年均值无法满足《环境空气质量标准》 (GB3095-2012)二级标准要求,故该区域为环境空气质量不达标区域,PM2.5 为影响该区域环境空气质量的主要污染物。PM2.5 超标原因主要与该区域大面积开发施工扬尘、工业污染、生物质焚烧、汽车尾气等综合影响有关。

根据以上分析,项目所在区域环境空气质量不达标,属于不达标区。

- (2)根据噪声监测结果可以看出,在评价区域的 4 个监测点中,监测点的噪声昼间、夜间监测值均能满足国家《声环境质量标准》(GB3096-2008)中 3 类标准限值,区域声学环境质量本底良好。
 - (3) 根据地表水监测结果,监测断面各指标标准指数均小于1,各指标均满足

《地表水环境质量标准》(GB3838-2002)中的III类水域标准限值。表明项目区域 地表水质量较好。

(六) 环境影响分析结论

(1) 大气环境影响

项目营运期产生的废气主要为工艺废气、车间跑冒滴漏废气、罐区、甲类库房、污水处理站废气、燃气锅炉天然气燃烧废气。通过采取治理措施后,项目营运期产生的废气不会对周围大气环境产生明显影响。

(2) 水环境影响

废水: 废水主要为生产工艺废水、反应设备清洗废水、喷淋废水、质检分析废水、车间冲洗废水、初期雨水、锅炉排污水、循环冷却系统排污水、纯水制备外排浓水以及生活污水等。项目产生的各类废水经厂区污水处理站处理后能达到现有项目执行的《污水综合排放标准》(GB8978-1996)表 4 中三级标准限值(《三级标准》缺失的指标参考《化学合成类制药工业水污染物排放标准》(GB21904-2008)表 2 限值和四川省水污染物排放标准(DB 51/190-93)W 级标准。废水排入园区污水处理厂进一步处理,达到《四川省岷江、沱江流域水污染执行标准》(DB51/2311-2016)中"工业园区集中式污水处理厂"标准后,最终排放岷江。综上所述,项目污水经处理后可实现达标排放,对最终受纳水体的影响很小,不会改变最终受纳水体环境功能。

(3) 噪声影响

噪声:项目营运期主要噪声源为离心机、废气风机、冷冻机、空压机、各类机泵、空调机组等。通过选用低噪声设备;厂房隔声,设备安装时采用减震垫,距离衰减等,有效的降低了设备噪音,对周围声环境影响较小。

(4) 固体废弃物

固废:本项目营运期产生的固废主要有:实验工艺固废、质检室废液及废试剂、废气处理装置废吸附剂、废吸附剂活性炭、空气净化系统废滤材、报废药品、废包装材料、纯水制备系统废吸附载体物、废机油和废含油抹布、污水处理站污泥、办公生活垃圾。项目产生废物中属名录中的危险废物按国家有关规定进行转移、运输及处置。本项目业主均委托有资质单位统一处置。一般固废主要为生活垃圾、纯水制备系统废吸附载体物,均由环卫部门清运。

目前污水处理站污泥暂未清掏,待清掏后暂按照危险废物进行管理。生产期间,

在环保部门的监管下,将污泥送有资质的检测部门严格按照《危险废物鉴别技术规范》和《危险废物鉴别标准》进行检测鉴别,明确其性质。如为危废,则按规定送有资质的危废单位处置;如为一般固废,交由环卫部门送城市垃圾填埋场处理。

综上所述,项目营运期产生的污染物均得到合理处置或达标排放,不会产生二次污染,对项目环境影响其微。

(六) 评价结论

综上所述,本项目符合国家产业发展政策,符合当地的规划,项目区域无明显的环境制约因素;项目采取的污染防治措施和本评价要求的对策经济技术可行,在环保设施连续稳定运行的基础上,项目运行过程中不会改变项目区域现有的环境区域功能,工程的建设符合"达标排放、总量控制"的原则。因此,本评价认为,本工程在确保现有环保设施正常运行及完善环评要求前提条件下,本项目的建设是可行的。

二、建议

- (1) 切实做好各项污染治理工作,保证生产中产生各污染物达标排放。
- (2) 提高全厂环保意识,建立和健全环保管理网络及环保运行台帐,加强对各项环保设施的日常维修管理。
- (3) 在厂界周围布置绿化隔离带,种植高大树木,在美化环境的同时提高对噪声污染的控制,减少废气及噪声对周围环境的影响。
- (4) 加强对化学品的妥善保管,制定严格的管理制度;对企业的设备维护应纳入平时的工作日程;全厂树立良好的安全和环保意识,并采用严格的管理制度进行监督。
- (5) 项目设计前需进行全厂的安全预评价,并需按照"安评"的要求布置厂区各车间和进行危险化学品贮存、运输、使用,尽可能将事故风险降至最低。
- (6) 本评价报告,是根据业主提供的工艺、技术参数、规模、工艺流程、原辅材料用量及与此对应的排污情况为基础进行的。如果工艺、规模等发生变化或进行了调整,应由业主按环保部门的要求另行申报。

三、环评批复

眉山市东坡生态环境局关于四川青木制药有限公司实验室及环保设施技改项目环境影响报告表的批复。

四川青木制药有限公司:你公司报送的《实验室及环保设施技改项目环境影响报

告表》(以下简称"报告表")收悉。经研究,批复如下:

1、项目建设内容和总体要求

该项目位于四川省眉山市东坡区经济开发区东区顺江大道南段 55 号,项目经眉山市东坡区经济和信息化局(川投资备[2020-511402-27-03-4348461JXQB-0046 号),主要建设内容为:对空置制剂车间进行改造,新建小试实验线及相关辅助设施,新建甲类库房 1500 平方米,日处理 300 吨的污水处理站一座,本项目实验的原料药为甲磺酸乐伐替尼、达克替尼、盐酸尼卡地平、酒石酸去甲肾上腺素,年实验的原料药共计1.11 吨。

我局,原则同意报告表的环境影响评价总体结论和拟采取的各项环境保护措施。 你公司应严格按照报告表中所列建设项目的性质、规模、工艺、地点和拟采取的环境 保护措施建设和运行,以确保项目对环境的不利影响能够得到缓解和控制。

2、项目建设应重点做好以下工作

- (一)严格按照报告表要求落实各项环保设施的建设,加强环保设施的日常管理和维护,确保环保设施正常运转及各类污染物稳定达标排放,杜绝事故排放。
- (二)落实并优化报告表提出的废气治理措施,确保大气污染物达标排放。实验车间有机废气依托"碱水喷淋塔+石蜡油吸收塔"处理后,并入车间跑冒滴漏废气处理装置(即碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔)处理后,由25米高排气筒排放。按照报告表要求,以以实验车间、现有储罐区、新建甲类库房、新建污水处理站边界起向外划定100m卫生防护距离,目前该范围内无环境敏感点,卫生防护距离内今后不宜引入居民区、学校、医院等环境敏感点等对大气环境要求较高的项目。
- (三)落实并优化报告表提出的废水处理措施,确保地表水环境安全。生产废水和生活污水一起排入厂区污水处理站达《化学合成类制药工业水污染物排放标准》及园区污水处理厂纳管标准,再管网排入园区污水处理厂处理后排放。
- (四)严格按照报告表要求,落实并优化固体废物污染防治措施,按照"减量化、资源化、无害化"的原则,对固体废物进. 行分类收集和处置,危险废物交由有危废资质的单位处置,避免造成二次污染,确保环境安全。
- (五)按报告表要求,选用低噪设备,采取厂房隔声、设备减振等可靠的防噪措施,确保厂界噪声达标排放。
 - (六)严格落实各类环境风险防范措施,按环评要求成立机构,健全组织,确定岗

位分工,确保不发生环境污染事故。

(七)全厂污染物总量控制指标为:化学需氧量 1. 1959 吨/年、氨氮 0.1148 吨/年、二氧化硫 0.056 吨/年,氮氧化物 1.06 吨/年、V0Cs4.7972 吨/年。项目在运行中应严格落实总量控制指标要求,确保区域环境质量不因本项目实施而下降。

3、其他有关要求

- (一)项目开工建设前,应依法完备行政许可相关手续。
- (二)项目建设必须严格执行配套建设的环境保护设施与主体工程同时设计. 同时施工、同时投产使用的环境保护"三同时"制度。
- (三)项目环境影响评价文件经批准后,如工程的性质、规模、工艺、地点或者防治污染、防止生态破坏的措施发生重大变,动的,建设单位应当重新报批环境影响评价文件,否则不得实施建设。建设项目的环境影响评价文件自批准之日起超过五年,方决定该项目开工建设的,环境影响评价文件应当报我局重新审核。
- (四)项目竣工后,依法在规定时间内进行项目竣工环境保护验收和信息公开,并 登录全国建设项目竣工环境保护验收信息平台填报相关信息。经验收合格后,项目方 可正式投入生产,否则将依法予以处罚。

详见附件: 眉东环建函[2020] 45号。

表五 监测标准及监测内容

一、验收监测标准

验收监测标准与环评标准见表 5-1。

表 5-1 验收监测标准与环评标准对照表

类型	验收标准		环评	4标准		
环境空气	\		《环境空气质量标准	主》(GB3095-2012)		
	(中二组	级标准		
地表水	1		《地表水环境质量杨	K准》(GB3838-2002)		
环境	\	\		中Ⅲ类标准		
声环境质量	1		《声环境质量标准》	(GB3096-2008) 中 3		
标准	\		类标准			
	《工业企业厂界环境噪声	5排放标准》	《工业企业厂界环	境噪声排放标准》		
			(GB12348-200	08)3类排放标		
 厂界噪声 	(6012346-2006) 中 3	12348-2008)中 3 类排放标准				
	尽问 Log (dD (A))	65	昼间: Leq(dB(A)):	夜间: Leq(dB(A)):		
	昼间: Leq (dB (A))		65	55		

_				
	《四川省固定污染源大气挥发性有机物排	《四川省固定污染源大气挥发性有机物		
	放标准》(DB51/2377-2017);	排放标准》(DB51/2377-2017);		
	《大气污染物综合排放标准》	《大气污染物综合排放标准》		
	(GB16297-1996);	(GB16297-1996);		
	《挥发性有机物无组织排放控制标准》	《挥发性有机物无组织排放控制标准》		
	(GB37822-2019);	(GB37822-2019);		
	《制药工业大气污染物排放标准》	《制药工业大气污染物排放标准》		
废气	(GB 37823-2019);	(GB 37823-2019);		
	《锅炉大气污染物排放标准》	《锅炉大气污染物排放标准》		
	(GB13271-2014);	(GB13271-2014);		
	《四川省固定污染源大气挥发性有机物排	《四川省固定污染源大气挥发性有机物		
	放标准》(DB51/2377-2017);	排放标准》(DB51/2377-2017);		
	《制药工业大气污染物排放标准》	《制药工业大气污染物排放标准》		
	(GB 37823-2019)	(GB 37823-2019)		
	《污水综合排放标准》(GB8978-1996)表	《污水综合排放标准》(GB8978-1996)		
	4 中三级排放标准	表 4 中三级排放标准		
कि और	《化学合成类制药工业水污染物排放标	《化学合成类制药工业水污染物排放标		
废水	准》(GB21904-2008)表 2 限值	准》(GB21904-2008)表 2 限值		
	《四川省水污染物排放标准》(DB	《四川省水污染物排放标准》(DB		
	51/190-93)W 级标准	51/190-93)W 级标准		
= A .I.C. 11.E	NTI-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			

二、验收监测内容

(一)验收期间工况情况

现有厂区员工和工作制度:现有厂区实际员工人数为200人,年工作300天,采取3班制,每班8小时。

本项目员工和工作制度劳动定员:本项目劳动定员均从现有员工中调配,不新增员工。实验工作制度:本项目实验装置为 24 小时连续运行,根据本项目实验量,实验装置年运行时间为 185d。验收监测期间 2021 年 5 月 20 日至 5 月 21 日,2021 年 5 月 24 日至 5 月 25 日主体工程运行稳定,各项环保设施运转正常。

(二) 检测项目

废水检测项目: pH、色度、悬浮物、五日生化需氧量、化学需氧量、石油类、动植物油、挥发酚、总氰化合物、硫化物、氨氮(以N计)、苯胺类、硝基苯类、总铜、总锌、甲苯、总有机碳、总氮(以N计)、总磷(以P计)、急性毒性(HgCl2毒性当量)、二氯甲烷、氯化物;

地下水检测项目: pH、耗氧量(COD_{Mn}法,以 0₂ 计)、氨氮(以 N 计)、总磷、铜、锌、汞、镉、铬(六价)、砷、铅、镍、氰化物、挥发性酚类(以苯酚计)、硫化物、氯化物、二氯甲烷、甲苯、总大肠菌群、菌落总数;

有组织废气检测项目:非甲烷总烃、二氯甲烷、丙酮、正己烷、异丙醇、乙酸丁酯、乙酸乙酯、环己烷、甲苯、甲醇、氯化氢、硫酸雾、氨、二甲苯、甲醛、硫化氢、臭气浓度、二氧化硫、氮氧化物、颗粒物、烟气黑度(林格曼黑度)、温度、压力、含氧量、含湿量;

无组织废气检测项目:非甲烷总烃、甲醇、二氯甲烷、乙酸乙酯、丙酮、氯化氢、 氨、硫化氢、颗粒物、臭气浓度;

土壤检测项目:二氯甲烷、甲苯;

噪声检测项目:工业企业厂界噪声。

(三) 检测点位及样品信息

废水检测点位及样品信息见表 5-2; 地下水检测点位及样品信息见表 5-3; 土壤 检测点位及样品信息见表 5-4; 有组织废气检测断面及相关信息见表 5-5; 无组织废 气检测点位及相关信息见表 5-6; 噪声检测点位及声源信息见表 5-7。

表 5-2 废水检测点位及样品信息

点位序号	采样点位	采样日期	样品性状
1#	废水总排口	2021. 05. 20-2021. 05. 21	微浊、微黄、无味、无浮油

表 5-3 地下水检测点位及样品信息

点位序号	采样点位	经纬度	采样日期	样品性状
1#	厂区东北侧 92m	E:103.836420	2021. 05.	透明、无色、无味、无浮油
1#	外农户处	N:29. 997138	21	
2#	厂区内	E:103.833176	2021. 05.	透明、无色、无味、无浮油
2#	<i>)</i>	N:29. 995238	20	

表 5-4 土壤检测点位及样品信息

点位序 号	采样点位	采样层 次(cm)	经纬度	采样日期	样品性状
1#	生产车间南侧外	0-20	E:103. 83355 4 N: 29. 995759	2021. 05. 21	暗棕色、沙壤土、潮、少量 根系
2#	罐区西南侧外	0-20	E:103.83498 7 N: 29.995745	2021. 05. 21	灰棕色、砂土、潮、少量根 系
3#	污水处理 站西南侧 外	0-20	E:103. 83501 0 N: 29. 994837	2021. 05. 21	暗棕色、轻壤土、潮、少量 根系

表 5-5 有组织废气检测断面及相关信息

断面	断面位置	污染源名称	净化设备	排气筒	燃料	建设	工况
序号	77, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		14,027	高度(m)	类型	时间	说明
DA001	垂直管道 距地 25m	原料药车间一废 气排放口	碱喷淋塔+石 蜡油喷淋塔+ 活性炭塔	27	/	/	正常
DA004	垂直管道 距地 10m	2#实验室+原料药 车间二废气排气 筒	碱喷淋塔+石 蜡油喷淋塔+ 碱喷淋塔+石 蜡油喷淋塔+ 活性炭塔	25	/	/	正常
DA003	垂直管道 距地 8m	污水处理站+罐区 +库房废气排放口	碱喷淋塔+石 蜡油喷淋塔+ 活性炭塔	15	/	/	正常
DA002	垂直管道 距地 5.7m	锅炉废气排放口	/	15	天然 气	/	正常

表 5-6 无组织废气检测点位及相关信息

点位序号	点位名称	采样日期	检测项目	持续风向	风速 (m/s)	天气情况
1#	项目厂界西 侧外 3m 处	2021. 05. 20 -2021. 05. 2	非甲烷总烃、甲醇、二氯甲烷、乙酸乙酯、丙酮、 氯化氢、氨、硫	无持续风 向	<1.0	阴

						1
			化氢、颗粒物、			
			臭气浓度			
			非甲烷总烃、甲			
		2021. 05. 20	醇、二氯甲烷、			
2#	项目厂界西	-2021. 05. 20 -2021. 05. 2	乙酸乙酯、丙酮、	无持续风	<1.0	阴
2#	侧外 3m 处		氯化氢、氨、硫	向	<1.0	199
		1	化氢、颗粒物、			
			臭气浓度			
			非甲烷总烃、甲			
		0001 05 00	醇、二氯甲烷、			
0.44	项目厂界东	2021. 05. 20	乙酸乙酯、丙酮、	无持续风	<1 O	771
3#	侧外 3m 处	-2021. 05. 2	氯化氢、氨、硫	向	<1.0	阴
		1	化氢、颗粒物、			
			臭气浓度			
			非甲烷总烃、甲			
		2021 25 22	醇、二氯甲烷、			
400	项目厂界东	2021. 05. 20	乙酸乙酯、丙酮、	无持续风	-1.0	771
4#	侧外 3m 处	-2021. 05. 2	氯化氢、氨、硫	向	<1.0	阴
		1	化氢、颗粒物、			
			臭气浓度			

表 5-7 噪声检测点位及声源信息

点位 序号	测点位置	检测日期	主要声源	功能区类 别/房间 类型	运行时 段	测试时 工况
1#	项目西侧厂界外 1m,高1.2m处	2021. 05. 24 -2021. 05. 2 5	风机	3	昼夜	正常
2#	项目西侧厂界外 1m,高1.2m处	2021. 05. 24 -2021. 05. 2	风机	3	昼夜	正常

		5				
	蚕日左側	2021. 05. 24				
3#	项目东侧厂界外	-2021. 05. 2	风机	3	昼夜	正常
	1m,高 1.2m 处	5				
	项目东侧厂界外	2021. 05. 24				
4#		-2021. 05. 2	风机、泵机	3	昼夜	正常
	1111,同 1. 2111 处	5				

具体的检测布点图如下所示:

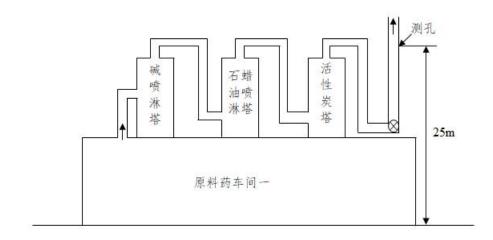


图 5-1 原料药车间一废气排放口检测布点图

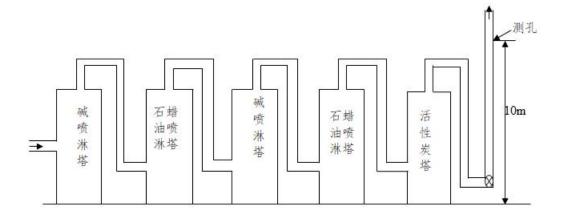


图 5-2 实验室+原料药车间二废气排放口检测布点图

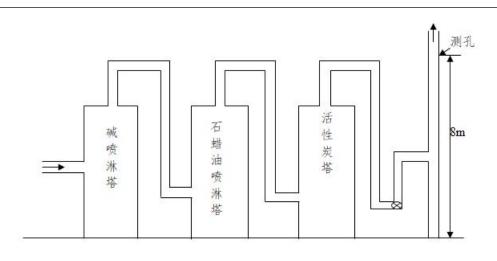


图 5-3 污水处理站+罐区+库房废气排放口检测布点图

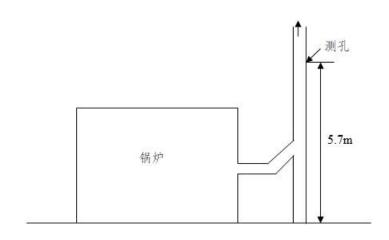


图 5-4 锅炉废气排放口检测布点图

(四)检测方法及方法来源

检测方法、方法来源、使用仪器及检出限见表 5-8; 采样仪器信息见表 5-9。

表 5-8 检测方法、方法来源、使用仪器及检出限

检测	 检测项目	检测方法	检测仪器	仪器编号	检出限
类别			及型号		
		水质 pH 值的测定	便携式 pH		
	рН	玻璃电极法 GB	计	JC/YQ255	/
水和		6920-86	РНВЈ-260		
废水		水质 色度的测定			
	色度	GB 11903-89 (稀释倍	/	/	/
		数法)			

1					
		水质 悬浮物的测定	电子天平		
	悬浮物	重量法	BSA224S-C	JC/YQ031	4mg/L
		GB 11901-89	W		
	五日生化需氧量	水质 五日生化需氧 量(BOD₅)的测定稀释 与接种法 HJ 505-2009	F4 便携式 溶解氧测 定仪 F4	JC/YQ162	0.5mg/L
	化学需氧量	水质 化学需氧量的 测定 重铬酸盐法 HJ 828-2017	/	/	4mg/L
	石油类	水质 石油类和动植			0.06mg/L
	动植物油类	物油类的测定 红外 分光光度法 HJ 637-2018	红外分光 测油仪 OIL 460	JC/YQ201	0.06mg/L
	挥发酚	水质 挥发酚的测定 4-氨基安替比林分光			0.0003mg/L
	1年/又印	光度法 HJ 503-2009	紫外可见		0.01mg/L
	氰化物	水质 氰化物的测定容量法和分光光度法异烟酸-巴比妥酸分光光度法 HJ 484-2009	分光光度 计 UV-1800PC	JC/YQ027	0.001mg/L
	硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 GB/T 16489-1996	紫外可见	10 /V0002	0.005mg/L
	氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ535-2009	分光光度 计 TU-1810	JC/YQ083	0.025mg/L
	苯胺	水质 苯胺类化合物	紫外可见	JC/YQ125	0.03mg/L

		的测定 N-(1-萘基)	分光光度		
		乙二胺偶氮分光光度	计		
		法 GB 11889-89	UV-1800PC		
	铜	水质 铜、锌、铅、	原子吸收		0.05mg/L
		· 镉的测定	分光光度	TC /V0000	
	锌	原子吸收分光光度法	计	JC/YQ028	0.05mg/L
		GB7475-87	AA-7003		
		水质 氯化物的测定			
		硝酸银滴定法 GB	/	/	2mg/L
		11896-89			
		水质 无机阴离子			
	氯化物	(F-, C1-, N0 ²⁻ , Br-,	离子色谱		
		N0 ³⁻ , P0 ₄ ³⁻ , S0 ₃ ²⁻ , S0 ₄ ²⁻)	仪	JC/YQ143	0.007mg/L
		的测定 离子色谱法	ICS-600		
		НЈ 84-2016			
	甲苯	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ639-2012	气相色谱- 质谱联用 仪 7890B-597 7B	JC/YQ173	1.4μg/L
	总氮	水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法	紫外可见 分光光度 计 TU-1810	JC/YQ083	0.05mg/L
	总磷	水质 总磷的测定 钼酸铵分光光度法 GB 11893-89	紫外可见 分光光度 计 UV-1800PC	JC/YQ027	0.01mg/L
	铅	石墨炉原子吸收法	原子吸收	JC/YQ028	1μg/L

		《水和废水监测分析	分光光度			
	镉	方法》(第四版增补	计		0. 1μg/L	
	ит,	版)国家环境保护总	AA-7003		0.11 8/ 12	
		局 (2002年)				
		无火焰原子吸收分光	原子吸收			
		光度法				
	镍	生活饮用水标准检验	分光光度	JC/YQ028	5μg/L	
		方法 金属指标 GB/T	计 44. 7000			
		5750. 6-2006 (15. 1)	AA-7003			
	汞	水质 汞、砷、硒、铋	F 7 # 1.		0. 04μg/L	
		和锑的测定	原子荧光			
	砷	原子荧光法 HJ	光度计	JC/YQ008	0. 3µg/L	
		694-2014	RGF-7800			
		水质 高锰酸盐指数				
	高锰酸盐指数	的测定	/	/	0.5mg/L	
		GB 11892-89				
水和		多管发酵法 生活饮				
废水		用水标准检验方法				
	总大肠菌群	微生物指标			/	
		GB/T 5750. 12-2006				
		(2)	电热恒温			
		平皿计数法 生活饮	培养箱	JC/YQ017		
		用水标准检验方法	DHP-9082			
	菌落总数	微生物指标			/	
		GB/T 5750. 12-2006				
		(1)				
	硝 硝基苯	水质 硝基苯类化合	气相色谱-		0. 04 μ g/L	
	基 邻-硝基甲	物的测定	质谱联用	JC/YQ202		
	苯苯	气相色谱-质谱法 HJ	仪		0.04 μ g/L	
1	1	1	l .			

	类	对-硝基甲	716-2014	GCMS-QP20		
	化	苯		10SE		0. 04 μ g/L
	合	间-硝基甲				0.04
	物	苯				0. 04 μ g/L
		间-硝基氯				0.05 μ g/L
		苯				0.00 μ g/ L
		对-硝基氯				0.05 μg/L
		苯				0. 03 μ g/ L
		邻-硝基氯				0.05 μg/L
		苯				0.00 F g/ L
		对-二硝基				0. 05 μ g/L
		苯				0,001,8,2
		间-二硝基				0. 05 μ g/L
		苯				
		邻-二硝基				0. 05 μ g/L
		苯				
		2,6-二硝				0. 05 μ g/L
		基甲苯				
		2, 4-二硝				0. 05 μ g/L
		基甲苯				
		2,4-二硝				0. 04 μ g/L
		基氯苯				
		3,4-二硝				0. 05 μ g/L
		基甲苯				
		2, 4, 6-三 硝基甲苯				0. 05 μ g/L
			水质 六价铬的测定	紫外可见		
水和		六价铬	二苯碳酰二肼分光光	分光光度	JC/YQ027	0.004mg/L
度水		/)	度法	计	JU/ 19021	o. oo mg/ L
			1214	VI		

		GB 7467-87	UV-1800PC		
	二氯甲烷	水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012	气相色谱- 质谱联用 仪 7890B-597 7B	JC/YQ173	1.0 µ g/L
	急性毒性	水质 急性毒性的测定 发光细菌法 GB/T 15441-1995	便携式生 物毒性检 测仪	JUST/YQ-0 571	/
	总有机碳	水质 总有机碳的测定 燃烧氧化-非分散 红外吸收法 HJ 501-2009	总有机碳 分析仪	JUST/YQ-0 242	O. 1mg/L
		固定污染源废气 总 烃、甲烷和非甲烷总 烃的测定气相色谱法 HJ 38-2017	气相色谱 仪		0.07mg/m ³
环境 空气	非甲烷总烃	环境空气 总烃、甲 烷和非甲烷总烃的测定 直接进样-气相色 谱法 HJ 604-2017	GC9790 II 型	JC/YQ084	$0.07 \mathrm{mg/m}^3$
和废 气		环境空气 总悬浮颗 粒物的测定重量法 GB/T 15432-1995	电子天平		0.001mg/m ³
	颗粒物	固定污染源排气中颗 粒物测定与气态污染 物采样方法 GB/T 16157-1996	BSA224S-C W	JC/YQ031	/
	烟气黑度	测烟望远镜法 《空气	测烟望远	JC/YQ090	/

	和废气监测分析方	镜 JCP-HD			
	法》(第四版增补版)				
	国家环境保护局				
	(2003年)				
恶臭	空气质量 恶臭的测				
(臭气浓度)	定 三点比较式臭袋	/	/	/	
(关、(依) 及)	法 GB/T 14675-93				
	环境空气和废气 氯	离子色谱			
氯化氢	化氢的测定	两丁巴宙 仪	TC /VO1 42	0. 2mg/m³	
就化全(离子色谱法 HJ		JC/YQ143	0. 2mg/m ³	
	549-2016	ICS-600			
二氯甲烷	环境空气 挥发性有			1. 0μg/m³	
甲苯	机物的测定 吸附管			0. 4μg/m³	
	采样-热脱附/气相色				
二甲苯	谱-质谱法 HJ	气相色谱-		$0.6 \mu g/m^3$	
	644-2013	质谱联用			
乙酸乙酯	国内汇油,据南层 据	仪	JC/YQ173	0.006mg/m ³	
异丙醇	固定污染源废气 挥	7890B-597		0.002mg/m ³	
丙酮	发性有机物的测定	7B		0.01mg/m ³	
乙酸丁酯	→ 固相吸附-热脱附/气			0.005mg/m ³	
正己烷	- 相色谱-质谱法 HJ - 734-2014			0.004 mg/m ³	
环己烷	734 2014			0.001mg/m ³	
甲醇	固定污染源排气中甲醇的测定 有相色谱法 HJ/T 33-1999	气相色谱 仪、GC9790 II型	JC/YQ084	2mg/m³	
硫酸雾	固定污染源废气 硫酸雾的测定	离子色谱 仪	JC/YQ143	$0.2 \mathrm{mg/m^3}$	
	离子色谱法 HJ	ICS-600			

		544-2016			
		亚甲基蓝分光光度法	紫外可见		0.01 mg/m ³
	硫化氢	《空气和废气监测分析方法》(第四版增补版)国家环境保护局(2003年)	分光光度 计 UV-1800PC	JC/YQ027	0.001 mg/m ³
		环境空气和废气 氨	紫外可见		$0.25~\mathrm{mg/m^3}$
	氨	的测定 纳氏试剂分 光光度法 HJ 533-2009	分光光度 计 TU-1810	JC/YQ083	0.01 mg/m ³
	甲醛	空气质量 甲醛的测定 乙酰丙酮分光光度法 GB/T 15516-1995	紫外可见 分光光度 计 TU-1810	JC/YQ083	0.025 mg/m ³
环境 空气 和废 气	二氧化硫	固定污染源废气 二 氧化硫的测定 定电 位电解法 HJ 57-2017	便携式大 流量低浓 度烟尘自 动测试仪 崂应 3012H-D	JC/YQ196	$3 \mathrm{mg/m^3}$
	氮氧化物	固定污染源废气 氮 氧化物的测定定电位 电解法 HJ 693-2014	大流量低 浓度烟尘/		3mg/m³
	排气参数(温度、压力、含湿量、含氧量)	固定污染源排气中颗 粒物测定与气态污染 物采样方法 GB/T 16157-1996	气测试仪 崂应 3012H-D型	JC/YQ277	/
土壤和	甲苯	土壤和沉积物 挥发	气相色谱-	JC/YQ173	1.3 µ g/kg

沉积物		性有机物的测定 吹	质谱联用		
	 二氯甲烷	扫捕集/气相色谱-质	仪		1 F.u. o /lro
	录(甲)元 	谱法	7890B-597		1.5 μ g/kg
		НЈ 605-2011	7B		
		工业企业厂界环境噪	多功能声		
		声排放标准	级计	JC/YQ266	
 噪声与	工业企业厂界	GB 12348-2008	AWA6228 ⁺		/
振动	噪声	环境噪声监测技术规	声校准器		/
		范噪声测量值修正	HS6020A	JC/YQ210	
		НЈ 706-2014	1130020A		

表 5-9 采样仪器及型号

样品类别	采样仪器及型号	仪器编号		
	便携式大流量低浓度烟尘自动测试仪	JC/YQ196		
	崂应 3012H-D	JC/ 16120		
	智能双路烟气采样器 崂应 3072 型	JC/YQ139		
有组织废气	双路烟气采样器 ZR-3710型	JC/YQ199		
有组织 及【	大流量低浓度烟尘/气测试仪	JC/YQ277		
	崂应 3012H-D 型			
	智能综合采样器 ADS-2062E	JC/YQ132、 JC/YQ133		
	测烟望远镜 JCP-HD	JC/YQ090		
	空气/智能 TSP 综合采样器 崂应 2050	JC/YQ144		
无组织废气	型	JC/ 1 Q 144		
	智能综合采样器 ADS-2062E	JC/YQ131、JC/YQ132、JC/YQ133		

三、质量控制与保证

为了确保监测数据的代表性、完整性、可靠性、准确性和精密性,对监测的全过程(包括布点、采样、样品贮运、实验室分析、数据处理等)进行质量控制。

- 1、严格按照验收监测方案的要求开展监测工作。
- 2、合理布设监测点,保证各监测点位布设的科学性和代表性。
- 3、采样人员均持证上岗,且严格遵照采样技术规范进行采样工作,认真填写采

样记录,按规定保存、运输样品。

- 4、及时了解工况情况,确保监测过程中工况负荷满足验收要求。
- 5、监测分析采用国家有关部门颁布的标准分析方法或推荐方法; 所有监测仪器、 量具均经过计量部门检定合格并在有效期内使用。
- 6、采样过程中采集了平行样;实验室分析过程中按规定进行平行样和质控样的 测定。
- 7、气样测定前校准仪器;噪声测定前后校准仪器,校准前后声级差≦0.5dB。以此对分析、测定结果进行质量控制。
 - 8、监测报告严格实行三级审核制度。

表六 监测结果

一、废水监测结果

表 6-1 废水监测结果

采样日期			2021.05.20					2021.05.21			
采样频次检测项目	第一次	第二次	第三次	第四次	平均值	第一次	第二次	第三次	第四次	平均值	标准限值
pH(无量纲)	7.78	7.79	7.78	7.77	/	7.76	7.77	7.78	7.79	/	6-9
色度 (稀释倍数)	4	4	4	4	4	2	2	2	2	2	64
悬浮物(mg/L)	5	6	7	5	6	6	5	5	7	6	400
五日生化需氧量 (mg/L)	10.4	12.0	11.6	12.2	11.6	11.3	11.7	12.1	11.8	11.7	300
化学需氧量(mg/L)	45	42	46	43	44	42	43	38	39	40	500
石油类(mg/L)	0.29	0.28	0.28	0.28	0.28	0.27	0.27	0.27	0.27	0.27	20
动植物油(mg/L)	0.70	0.72	0.66	0.67	0.69	0.68	0.69	0.70	0.70	0.69	100
挥发酚(mg/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.0
总氰化合物(mg/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0
硫化物(mg/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0
氨氮(以N计)(mg/L)	0.545	0.566	0.585	0.509	0.551	0.530	0.488	0.569	0.533	0.530	45

ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.0
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5
0.10	0.60	0.01					0.62			
8.18	8.68	8.36	7.94	8.29	7.56	8.47	8.63	8.41	8.27	70
		0.01								
0.87	0.89	0.86	0.85	0.87	0.92	0.89	0.85	0.94	0.90	8
327	324	323	326	325	325	324	324	328	325	800
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3
12.3	13.7	12.2	14.2	13.1	13.0	11.8	13.1	12.7	12.6	/
0.016	0.001	0.024	0.015	0.020	0.024	0.022	0.006	0.020	0.020	0.05
0.016	0.021	0.024	0.017	0.020	0.024	0.033	0.026	0.028	0.028	0.07
	ND ND ND 8.18 0.87 327 ND	ND ND ND ND ND ND ND ND 8.18 8.68 0.87 0.89 327 324 ND ND 12.3 13.7	ND ND ND ND ND ND ND ND ND ND ND ND 8.18 8.68 8.36 0.87 0.89 0.86 327 324 323 ND ND ND 12.3 13.7 12.2	ND ND ND 8.18 8.68 8.36 7.94 0.87 0.89 0.86 0.85 327 324 323 326 ND ND ND ND 12.3 13.7 12.2 14.2	ND ND ND ND 8.18 8.68 8.36 7.94 8.29 0.87 0.89 0.86 0.85 0.87 327 324 323 326 325 ND ND ND ND 12.3 13.7 12.2 14.2 13.1	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 8.18 8.68 8.36 7.94 8.29 7.56 0.87 0.89 0.86 0.85 0.87 0.92 327 324 323 326 325 325 ND ND ND ND ND 12.3 13.7 12.2 14.2 13.1 13.0	ND ND ND ND ND 8.18 8.68 8.36 7.94 8.29 7.56 8.47 0.87 0.89 0.86 0.85 0.87 0.92 0.89 327 324 323 326 325 325 324 ND ND ND ND ND ND ND 12.3 13.7 12.2 14.2 13.1 13.0 11.8	ND ND<	ND ND<	ND ND<

备注: 1、"ND"表示检测结果小于方法检出限;

- 2、评价标准未对总有机碳作限值要求;
- 3、"*"表示该指标分包给四川佳士特环境检测有限公司,其 CMA 资质证书编号为 16231205063。

分析评价:本次检测结果表明,该项目废水总排口污染因子: pH、悬浮物、五日生化需氧量、化学需氧量、石油类、动植物油、挥发

酚、总氰化合物、硫化物、苯胺类、硝基苯类、总铜、总锌、甲苯均符合《污水综合排放标准》(GB 8978-1996)表 4 中三级排放标准; 色度、总氮(以 N 计)、氨氮(以 N 计)、总磷(以 P 计)、氯化物参照《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 中 B 级排放标准; 急性毒性(HgCl₂毒性当量)、二氯甲烷均符合《化学合成类制药工业水污染物排放标准》(GB 21904-2008)表 2 中排放标准。

二、土壤监测结果

表 6-2 土壤监测结果

采样点位	生产车间南侧 外	罐区西南侧外	污水处理站西南侧外		
采样层次 (cm) 检测项目	0-20	0-20	0-20	标准限值	
二氯甲烷(mg/kg)	ND	ND	ND	616	
甲苯(mg/kg)	ND	ND	ND	1200	

备注: "ND"表示检测结果小于方法检出限。

分析评价:本次检测结果表明,该项目所测3个点位土壤污染因子:二氯甲烷、甲苯均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)表1中筛选值第二类用地。

三、噪声监测结果

表 6-3 噪声监测结果

=	主要噪声》	原	4#为风机、泵机,其余点位均为风机						
检	测环境条	-件	天	天气状况:无雨雪、无雷电、风速小于 5m/s					
心鬼	坛 安 仕		测前	93.8/93.8	 				
仪器校准值dB(A)		L dB(A)	测后	93.6/93.7	检测结果 Lea	alar (A)			
检测	测点	检测	Δ 1	测点位置	测量值	标准限值			
日期	编号	时间	<u> </u>	侧点位直	侧里阻	AVAE AK JE			
	1.44	昼间	西日亜伽卜	项目西侧厂界外 1m, 高 1.2m 处 -		65			
	1# 夜间	夜间		介介 1m,同 1.2m 处 「	47	55			
	2#	昼间	西日亜伽一		59	65			
2021.	2#	夜间	坝日四侧/ /	介介 1m, 向 1.2m 处 「	52	55			
05.24	2#	昼间	西日左伽一目	罗外 1	61	65			
	3#	夜间	坝日朱侧/ /	项目东侧厂界外 1m, 高 1.2m 处		55			
	昼间		西日左侧口	TH-MITHUR 1		65			
	4#	夜间	坝日	项目东侧厂界外 1m, 高 1.2m 处		55			

	1#	昼间	项目西侧厂界外 1m, 高 1.2m 处	59	65
	1#	夜间	坝日四侧厂介外 IIII,同 I.2III 处	47	55
	2#	昼间	西口亚侧厂里分 1	58	65
2021.	2#	夜间	项目西侧厂界外 1m, 高 1.2m 处	51	55
05.25	2.4	昼间	项目东侧厂界外 1m, 高 1.2m 处	58	65
	3#	夜间	项目示侧广介介 IIII,同 I.2Ⅲ 欠	48	55
	4#	昼间	项目东侧厂界外 1m, 高 1.2m 处	60	65
	4#	夜间	次日示网厂介介 IIII,同 I.2III 欠	48	55

分析评价:本次检测结果表明,本项目所测 4 个点位的昼间和夜间工业企业厂界噪声均符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)表 1 中 3 类功能区排放标准。

四、地下水监测结果

表 6-4 地下水检测结果

采样日期	2021.05.21	2021.05.20	
采样点位	厂区东北侧 92m 外农	厂区内	标准限值
检测项目	户处) BN	
pH(无量纲)	7.42	7.47	6.5≤pH≤8.5
耗氧量(COD _{Mn} 法,以O ₂ 计)	ND	ND	≤3.0
(mg/L)	ND	ND	₹3.0
氨氮(以N计)(mg/L)	0.084	0.126	≤0.50
	0.01	0.01	/
铜(mg/L)	ND	ND	≤1.00
锌(mg/L)	ND	ND	≤1.00
汞 (mg/L)	ND	ND	≤0.001
镉(mg/L)	0.0007	0.0003	≤0.005
各(六价)(mg/L)	ND	ND	≤0.05
·····································	ND	0.0014	≤0.01
铅 (mg/L)	0.002	0.005	≤0.01
·····································	ND	ND	≤0.02
氰化物(mg/L)	ND	ND	≤0.05

挥发性酚类(以苯酚计)	ND	ND	< 0.002
(mg/L)	ND	ND	≤0.002
硫化物(mg/L)	ND	ND	≤0.02
氯化物 (mg/L)	24.8	57.9	€250
二氯甲烷(μg/L)	ND	ND	€20
甲苯 (μg/L)	ND	ND	€700
总大肠菌群(MPN/100mL)	<2	<2	€3
菌落总数(CFU/mL)	3.0×10 ⁴	0	≤100

备注: 1、"ND"表示检测结果小于方法检出限;

2、评价标准未对总磷作限值要求。

分析评价:本次检测结果表明,该项目厂区内监测井所测检测因子均符合《地下水质量标准》(GB/T 14848-2017)表 1 和表 2 中III类标准;厂区东北侧 92 米处农户水井所测检测因子除菌落总数外均符合《地下水质量标准》(GB/T 14848-2017)表 1 和表 2 中III类标准。

五、废气监测结果

表 6-5 DA001 原料药车间一废气排放口检测结果

采样					检测结果			排气筒高
日期		检测项目	第一次	第二次	第三次	平均值	标准限 值	度 (m)
	标-	干流量(m³/h)	4800	4786	4933	4840	/	
	,_	实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	二氧化硫	排放浓度 (mg/m³)	ND	ND	ND	ND	550	
		排放速率(kg/h)					11.79	
2021. 05.20	标-	干流量(m³/h)	4550	4617	4737	4635	/	27
		实测浓度 (mg/m³)	0.482	0.430	0.509	0.474	/	
	甲醛	排放浓度 (mg/m³)	0.482	0.430	0.509	0.474	5	
		排放速率(kg/h)	2.19×10 ⁻³	1.99×10 ⁻³	2.41×10 ⁻³	2.20×10 ⁻³	0.79	
	标-	干流量(m³/h)	4426	4505	4469	4467	/	

	11	实测浓度 (mg/m³)	5.70	43.6	49.9	33.1	/	
	非甲烷总烃	排放浓度 (mg/m³)	5.70	43.6	49.9	33.1	60	
		排放速率(kg/h)	0.025	0.196	0.223	0.148	16.04	
		实测浓度 (mg/m³)	2.12	24.3	18.0	14.8	/	
	甲醇	排放浓度 (mg/m³)	2.12	24.3	18.0	14.8	190	
		排放速率(kg/h)	9.38×10 ⁻³	0.109	0.081	0.095	22.88	
		实测浓度 (mg/m³)	1.58	1.30	1.85	1.58	/	
	氨	排放浓度 (mg/m³)	1.58	1.30	1.85	1.58	20	
		排放速率(kg/h)	6.99×10 ⁻³	5.86×10 ⁻³	8.27×10 ⁻³	7.04×10 ⁻³	/	
		实测浓度 (mg/m³)	11.4	11.2	11.9	11.5	/	
	氯化氢	排放浓度 (mg/m³)	11.4	11.2	11.9	11.5	30	
		排放速率(kg/h)	0.050	0.050	0.053	0.051	/	
		实测浓度 (mg/m³)	0.015	0.046	ND	0.020	/	
	二氯甲烷	排放浓度 (mg/m³)	0.015	0.046	ND	0.020	20	
		排放速率(kg/h)	6.64×10 ⁻⁵	2.07×10 ⁻⁴		9.11×10 ⁻⁵	4.87	
		实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	甲苯	排放浓度 (mg/m³)	ND	ND	ND	ND	40	
		排放速率(kg/h)					14.16	
	二甲苯	实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	二甲苯	排放浓度 (mg/m³)	ND	ND	ND	ND	70	
	•	排放速率(kg/h)					4.64	
2021. 05.20		实测浓度 (mg/m³)	ND	ND	ND	ND	/	27
	环己烷	排放浓度 (mg/m³)	ND	ND	ND	ND	40	
		排放速率(kg/h)					8.02	

		实测浓度 (mg/m³)	0.029	0.238	0.131	0.133	/	
	正己烷	排放浓度 (mg/m³)	0.029	0.238	0.131	0.133	40	
		排放速率(kg/h)	1.28×10 ⁻⁴	1.07×10 ⁻³	5.85×10 ⁻⁴	5.94×10 ⁻⁴	6.55	
		实测浓度 (mg/m³)	0.45	0.45	0.03	0.31	/	
	丙酮	排放浓度 (mg/m³)	0.45	0.45	0.03	0.31	40	
		排放速率(kg/h)	1.99×10 ⁻³	2.03×10 ⁻³	1.34×10 ⁻⁴	1.38×10 ⁻³	6.55	
		实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	异丙醇	排放浓度 (mg/m³)	ND	ND	ND	ND	40	
		排放速率(kg/h)					8.22	
	フェムー	实测浓度 (mg/m³)	0.021	0.077	0.034	0.044	/	
	乙酸丁酯	排放浓度 (mg/m³)	0.021	0.077	0.034	0.044	40	
		排放速率(kg/h)	9.29×10 ⁻⁵	3.47×10 ⁻⁴	1.52×10 ⁻⁴	1.97×10 ⁻⁴	8.22	
	フェ公フ	实测浓度 (mg/m³)	1.07	0.815	0.664	0.850	/	
	乙酸乙酯	排放浓度 (mg/m³)	1.07	0.815	0.664	0.850	40	
		排放速率(kg/h)	4.74×10 ⁻³	3.67×10 ⁻³	2.97×10 ⁻⁴	2.90×10 ⁻³	8.22	
	标-	干流量(m³/h)	4607	4676	4626	4636	/	
	一左	实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	二氧化硫	排放浓度 (mg/m³)	ND	ND	ND	ND	550	
2021		排放速率(kg/h)					11.79	
2021. 05.21	标-	干流量(m³/h)	4523	4476	4480	4493	/	
		实测浓度 (mg/m³)	0.350	0.376	0.271	0.332	/	
	甲醛	排放浓度 (mg/m³)	0.350	0.376	0.271	0.332	5	
		排放速率(kg/h)	1.58×10 ⁻³	1.68×10 ⁻³	1.21×10 ⁻³	1.49×10 ⁻³	0.79	
	标-	干流量(m³/h)	4666	4673	4653	4664	/	

		实测浓度 (mg/m³)	12.9	41.2	8.12	20.7	/	
	非甲烷 总烃	排放浓度 (mg/m³)	12.9	41.2	8.12	20.7	60	
		排放速率(kg/h)	0.060	0.193	0.038	0.097	16.04	
		实测浓度 (mg/m³)	3.00	27.6	28.7	19.8	/	
	甲醇	排放浓度 (mg/m³)	3.00	27.6	28.7	19.8	190	
		排放速率(kg/h)	0.014	0.129	0.134	0.092	22.88	
		实测浓度 (mg/m³)	1.03	1.10	0.86	1.00	/	
	氨	排放浓度 (mg/m³)	1.03	1.10	0.86	1.00	20	
		排放速率(kg/h)	4.81×10 ⁻³	5.14×10 ⁻³	4.00×10 ⁻³	4.65×10 ⁻³	/	
		实测浓度 (mg/m³)	11.8	11.9	11.0	11.6	/	
	氯化氢	排放浓度 (mg/m³)	11.8	11.9	11.0	11.6	30	
2021.		排放速率(kg/h)	0.055	0.056	0.051	0.054	/	27
05.21	-	实测浓度 (mg/m³)	0.053	0.050	0.054	0.052	/	27
	二氯甲烷	排放浓度 (mg/m³)	0.053	0.050	0.054	0.052	20	
		排放速率(kg/h)	2.47×10 ⁻⁴	2.34×10 ⁻⁴	2.51×10 ⁻⁴	2.44×10 ⁻⁴	4.87	
		实测浓度 (mg/m³)	0.049	0.039	0.018	0.035	/	
	甲苯	排放浓度 (mg/m³)	0.049	0.039	0.018	0.035	40	
		排放速率(kg/h)	2.29×10 ⁻⁴	1.82×10 ⁻⁴	8.38×10 ⁻⁵	1.65×10 ⁻⁴	14.16	
		实测浓度 (mg/m³)	0.063	ND	0.096	0.053 /		
	二甲苯	排放浓度 (mg/m³)	0.063	ND	0.096	0.053	70	
		排放速率(kg/h)	2.94×10 ⁻⁴		4.47×10 ⁻⁴	2.47×10 ⁻⁴	4.64	
		实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	环己烷	排放浓度 (mg/m³)	ND	ND	ND	ND	40	
		排放速率(kg/h)					8.02	

		实测浓度 (mg/m³)	0.031	0.121	0.009	0.054	/	
	正己烷	排放浓度 (mg/m³)	0.031	0.121	0.009	0.054	40	
		排放速率(kg/h)	1.45×10 ⁻⁴	5.65×10 ⁻⁴	4.19×10 ⁻⁵	2.51×10 ⁻⁴	6.55	
		实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	丙酮	排放浓度 (mg/m³)	ND	ND	ND	ND	40	
	丙酮	排放速率(kg/h)					6.55	
		实测浓度 (mg/m³)	ND	ND	ND	ND	/	
	异丙醇	排放浓度 (mg/m³)	ND	ND	ND	ND	40	
		排放速率(kg/h)					8.22	
2021.		实测浓度 (mg/m³)	0.008	0.039	0.008	0.018	/	27
05.21	乙酸丁酯	排放浓度 (mg/m³)	0.008	0.039	0.008	0.018	40	21
		排放速率(kg/h)	3.73×10 ⁻⁵	1.82×10 ⁻⁴	3.72×10 ⁻⁵	8.55×10 ⁻⁵	8.22	
	-1	实测浓度 (mg/m³)	1.07	1.03	0.991	1.03	/	
	乙酸乙酯	排放浓度 (mg/m³)	1.07	1.03	0.991	1.03	40	
		排放速率(kg/h)	4.99×10 ⁻³	4.81×10 ⁻³	4.61×10 ⁻³	4.80×10 ⁻³	8.22	

备注: 1、"ND"表示检测结果小于方法检出限;

- 2、排放速率按规范内插法计算;
- 3、"--"表示该指标排放速率不作计算。

分析评价:本次检测结果表明,该项目 DA001 原料药车间一排放口有组织排放的二氧化硫、甲醇、甲苯、二甲苯排放浓度和排放速率均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 中二级排放标准;非甲烷总烃排放浓度和排放速率符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 3 中医药制造行业排放标准;甲醛、二氯甲烷、环己烷、正己烷、丙酮、异丙醇、乙酸丁酯、乙酸乙酯排放浓度和排放速率均符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 4 中排放标准;氨、氯化氢排放浓度均符合《制药工业大气污染物排放标准》(GB 37823-2019)表 2 中化学药品原料药制造、兽用药品原料药制造、生物药品制品制造、医药中间体生产

和药物研发机构工艺废气排放标准.

表 6-6DA004 2#实验室+原料药车间二废气排放口检测结果

				7	检测结果			排气筒
采样日期		检测项目	第一次	第二次	第三次	平均值	标准限值	高度 (m)
	标-	干流量(m³/h)	6301	7099	6701	6700	/	
		实测浓度 (mg/m³)	4.73	4.70	4.49	4.64	/	
2021. 05.24	硫酸雾	排放浓度 (mg/m³)	4.73	4.70	4.49	4.64	45	25
		排放速率 (kg/h)	0.030	0.033	0.030	0.031	5.70	
	标-	干流量(m³/h)	6691	6114	6688	6498	/	
		实测浓度 (mg/m³)	14.2	50.6	30.2	31.7	/	
	非甲烷总烃	排放浓度 (mg/m³)	14.2	50.6	30.2	31.7	60	
		排放速率 (kg/h)	0.095	0.309	0.202	0.202	13.4	
2021.		实测浓度 (mg/m³)	3.48	4.85	3.22	3.85	/	25
05.24	甲醇	排放浓度 (mg/m³)	3.48	4.85	3.22	3.85	190	25
		排放速率 (kg/h)	0.023	0.030	0.022	0.025	18.8	
	氨	实测浓度 (mg/m³)	1.04	1.14	1.79	1.32	/	
	安\	排放浓度 (mg/m³)	1.04	1.14	1.79	1.32	20	

	排品油液				8 63×10-		
		6.96×10 ⁻³	6.97×10 ⁻³	0.012		/	
					,		
		2.65	3.28	3.20	3.04	/	
	(mg/m ³)						
氯化氢	排放浓度	2.65	3.28	3.20	3.04	30	
	(mg/m^3)						
	排放速率	0.018	0.020	0.021	0.020	/	
	(kg/h)	0.016	0.020	0.021	0.020	,	
	实测浓度	0.050	0.046	0.021	0.042	,	
	(mg/m^3)	0.050	0.046	0.031	0.042	/	
二氯	排放浓度	0.0			0.01-		
甲烷	(mg/m^3)	0.050	0.046	0.031	0.042	20	
	排放速率				2.74×10 ⁻		
	(kg/h)	3.35×10 ⁻⁴	2.81×10 ⁻⁴	2.07×10 ⁻⁴	4	4.05	
	实测浓度					,	
	(mg/m^3)	ND	ND	ND	ND	/	
	排放浓度						
甲苯	(mg/m^3)	ND	ND	ND	ND	40	
	排放速率						
	(kg/h)					11.6	
	实测浓度					,	
	(mg/m^3)	ND	ND	ND	ND	/	
	排放浓度						
环己烷	(mg/m^3)	ND	ND	ND	ND	40	
	排放速率						
	(kg/h)					6.70	
	实测浓度						
正己烷	(mg/m^3)	ND	ND	ND	ND	/	
	排放浓度	ND	ND	ND	ND	40	
	甲烷苯己烷	氯化氢 (mg/m³) 排放速率 (kg/h) 实测浓度 (mg/m³) 排放速率 (kg/h) 实测水度 (mg/m³) 排放速率 (kg/h) 实测水度 (mg/m³) 排放速率 (kg/h) 实测水度 (mg/m³) 排放速率 (kg/h) 实测水度 (mg/m³) 非放速率 (kg/h) 实测水度 (mg/m³)	(kg/h) (kg/h) (kg/h) (xy) 浓度 (mg/m³) (mg/m³) (kg/h) (mg/m³) (mg/m³) (kg/h) (mg/m³) (kg/h) (mg/m³)	(kg/h)	(kg/h) 6.96×10³ 6.97×10³ 0.012 实測浓度 (mg/m³) 2.65 3.28 3.20 排放浓度 (mg/m³) 2.65 3.28 3.20 排放速率 (kg/h) 0.018 0.020 0.021 实测浓度 (mg/m³) 0.050 0.046 0.031 排放速率 (kg/h) 0.050 0.046 0.031 排放速率 (kg/h) 3.35×10⁴ 2.81×10⁴ 2.07×10⁴ 实测浓度 (mg/m³) ND ND ND 排放速率 (kg/h) ND ND ND 非放速率 (kg/h) ND ND ND 排放速率 (kg/h) ND ND ND 排放速率 (kg/h) ND ND ND 非放速率 (kg/h) ND ND ND 正已烷 (mg/m³) ND ND ND 正已烷 (mg/m³) ND ND ND	(kg/h) 6.96×10 ⁻³ 6.97×10 ⁻³ 0.012 实测浓度 (mg/m³) 2.65 3.28 3.20 3.04 排放浓度 (mg/m³) 2.65 3.28 3.20 3.04 排放速率 (kg/h) 0.018 0.020 0.021 0.020 实测浓度 (mg/m³) 0.050 0.046 0.031 0.042 排放速率 (kg/h) 3.35×10 ⁻⁴ 2.81×10 ⁻⁴ 2.07×10 ⁻⁴ 2.74×10 ⁻⁴ 实测浓度 (mg/m³) ND ND ND ND 排放速率 (kg/h) ND ND ND ND 非放速率 (kg/h) ND ND ND ND 正已烷 实测浓度 (mg/m³) ND ND ND ND	(kg/h) 6.96×10³ 6.97×10³ 0.012 3 / (kg/h) 2.65 3.28 3.20 3.04 / 排放速度 (mg/m³) 2.65 3.28 3.20 3.04 30 排放速度 (kg/h) 0.018 0.020 0.021 0.020 / (kg/h) 0.050 0.046 0.031 0.042 / 中烷 排放浓度 (mg/m³) 0.050 0.046 0.031 0.042 / 排放速率 (kg/h) 3.35×10-4 2.81×10-4 2.07×10-1 2.74×10-4 4.05 实测浓度 (mg/m³) ND ND ND ND / 排放速度 (mg/m³) ND ND ND ND / 排放速率 (kg/h) 11.6 环己烷 (mg/m³) ND ND ND ND ND AD 排放速度 (mg/m³) ND ND ND ND AD 排放速度 (kg/h) 6.70 正已统 (mg/m³) ND ND ND ND /

		(mg/m ³)						
		排放速率					5.45	
		(kg/h)					5.45	
		实测浓度	MD	MD	ND	ND	/	
		(mg/m^3)	ND	ND	ND	ND	/	
	丙酮	排放浓度	ND	ND	ND	ND	40	
	[7] EN	(mg/m^3)	ND	ND	ND	ND	40	
		排放速率					5.45	
		(kg/h)					3.43	
	异丙醇	实测浓度	ND	ND	ND	ND	/	
	开闪时	(mg/m ³)	ND	ND	ND	ND	,	
		排放浓度	ND	ND	ND	ND	40	
	异丙醇	(mg/m ³)	TVD	T(D	110	TVD		
)1114	排放速率					6.70	
		(kg/h)					0.70	
		实测浓度	ND	ND	ND	ND	/	
		(mg/m³)	1,2	1,2		1,12	,	
	乙酸	排放浓度	ND	ND	ND	ND	40	
2021.	丁酯	(mg/m ³)	1,2	1,2		1,12		
05.24		排放速率					6.70	25
		(kg/h)						
		实测浓度	0.172	0.129	0.152	0.151	/	
		(mg/m³)	****	****		******	,	
	乙酸	排放浓度	0.172	0.129	0.152	0.151	40	
	乙酯	(mg/m ³)						
		排放速率	1.15×10 ⁻³	7.89×10 ⁻⁴	1.02×10 ⁻³	9.86×10 ⁻	6.70	
		(kg/h)				4		
2021.	标-	干流量(m³/h)	6756	6788	6803	6782	/	
05.25	硫酸雾	实测浓度	3.05	2.94	2.98	2.99	/	

(mg/m³)								
(mg/m³) 3.05 2.94 2.98 2.99 45 排放速率			(mg/m ³)					
(mg/m³)			排放浓度	3.05	2 94	2 98	2 99	45
(kg/h)			(mg/m^3)	3.03	2.51	2.70	2.77	13
(kg/h)			排放速率	0.021	0.020	0.020	0.020	5.70
実測浓度 (mg/m³) 10.8 17.4 34.7 21.0 / 非形成度 (mg/m³) 10.8 17.4 34.7 21.0 / 基烃 (mg/m³) 10.8 17.4 34.7 21.0 60 排放速率 (kg/h) 0.075 0.134 0.275 0.161 13.4 要测浓度 (mg/m³) 1.45 1.64 1.51 1.53 / 排放速率 (kg/h) 0.010 0.013 0.012 0.012 18.8 要测浓度 (mg/m³) 1.96 1.51 2.34 1.94 / 集放浓度 (mg/m³) 1.96 1.51 2.34 1.94 20 排放速率 (kg/h) 0.014 0.012 0.019 0.015 / 实测浓度 (mg/m³) 6.27 6.38 6.34 6.33 / 氟化氫 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30			(kg/h)	0.021	0.020	0.020	0.020	5.70
#甲烷 排放浓度 10.8 17.4 34.7 21.0 / #放浓度 (mg/m³) 10.8 17.4 34.7 21.0 60		标刊	F流量(m³/h)	6980	7729	7912	7540	/
#甲烷 排放浓度 10.8 17.4 34.7 21.0 60			实测浓度	10.0	17.4	24.7	21.0	,
No.			(mg/m^3)	10.8	1 / .4	34./	21.0	/
上京	非	甲烷	排放浓度	10.8	17.4	24.7	21.0	(0)
(kg/h)	总	总烃	(mg/m^3)		1 / .4	34./	21.0	60
(kg/h) (xg/m³) 1.45 1.64 1.51 1.53 / (mg/m³) 1.45 1.64 1.51 1.53 / (mg/m³) 排放速率			排放速率	0.075	0.124	0.275	0.161	12.4
田醇			(kg/h)	0.075	0.134	0.275	0.161	13.4
甲醇			实测浓度	1.45	1.64	1.51	1.52	,
中醇			(mg/m^3)	1.45	1.64	1.51	1.53	/
(mg/m³)	Ħ	打耐	排放浓度	1.45	1.64	1.51	1.52	100
(kg/h) 0.010 0.013 0.012 0.012 18.8 实测浓度 (mg/m³) 1.96 1.51 2.34 1.94 / 排放浓度 (mg/m³) 1.96 1.51 2.34 1.94 20 排放速率 (kg/h) 0.014 0.012 0.019 0.015 / 实测浓度 (mg/m³) 6.27 6.38 6.34 6.33 / 氯化氢 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30	1	广()	(mg/m^3)		1.04	1.31	1.33	190
(kg/h) 实测浓度 (mg/m³) 排放浓度 (mg/m³) 排放速率 (kg/h) (kg/h) 排放速率 (kg/h) (kg/h)			排放速率	0.010	0.013	0.012	0.012	18.8
(mg/m³) 1.96 1.51 2.34 1.94 / 排放浓度 (mg/m³) 1.96 1.51 2.34 1.94 20 排放速率 (kg/h) 0.014 0.012 0.019 0.015 / 实测浓度 (mg/m³) 6.27 6.38 6.34 6.33 / 氯化氢 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30			(kg/h)	0.010				
(mg/m³) 排放浓度 1.96 1.51 2.34 1.94 20 排放速率 (kg/h) 0.014 0.012 0.019 0.015 / 实测浓度 (mg/m³) 6.27 6.38 6.34 6.33 / 氟化氢 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30			实测浓度	1.06	1.51	2.24	1.04	,
氨 (mg/m³) 1.96 1.51 2.34 1.94 20 排放速率 (kg/h) 0.014 0.012 0.019 0.015 / 实测浓度 (mg/m³) 6.27 6.38 6.34 6.33 / 氯化氢 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30			(mg/m^3)	1.96	1.51	2.34	1.94	/
(mg/m³)		与	排放浓度	1.06	1.51	2.24	1.04	20
(kg/h) 0.014 0.012 0.019 0.015 / 实测浓度 (mg/m³) 6.27 6.38 6.34 6.33 / 氯化氢 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30		安	(mg/m^3)	1.96	1.51	2.54	1.94	20
(kg/h) 字测浓度 (mg/m³) 4.27 6.38 6.34 6.33 / (mg/m³) 6.27 6.38 6.34 6.33 30		Ī	排放速率	0.014	0.012	0.010	0.017	,
(mg/m³) 6.27 6.38 6.34 6.33 / (mg/m³) 6.27 6.38 6.34 6.33 30			(kg/h)	0.014	0.012	0.019	0.015	/
無化氢 (mg/m³) 排放浓度 (mg/m³) 6.27 6.38 6.34 6.33 30		氯化氢	实测浓度	(27	(20	(24	(22	,
(mg/m ³) 6.27 6.38 6.34 6.33 30			(mg/m^3)	6.27	6.38	6.34	6.33	/
(mg/m ³)	氯		排放浓度	6 27	6.29	624	622	20
排放速率 0.044 0.050 0.050 0.048 /			(mg/m^3)	0.27	0.38	0.34	6.33	30
			排放速率	0.044	0.050	0.050	0.048	/

		(kg/h)						
		实测浓度	ND	ND	ND	ND	,	
	二氯甲烷	(mg/m^3)	ND	ND	ND	ND	/	
		排放浓度	ND	ND	ND	ND	20	
		(mg/m^3)						
		排放速率					4.05	
		(kg/h)						
	甲苯	实测浓度	ND	ND	ND	ND	/	
	1 7	(mg/m^3)	ND	110	110	110	,	
		排放浓度	ND	ND	ND	ND	40	25
	甲苯	(mg/m ³)						
	174-	排放速率					11.6	
		(kg/h)						
	环己烷	实测浓度	ND	ND	ND	ND	/	
		(mg/m ³)						
		排放浓度	ND	ND	ND	ND	40	
		(mg/m ³)						
		排放速率					6.70	
2021.		(kg/h)						
05.25	正己烷	实测浓度	ND	ND	ND	ND	/	
		(mg/m ³)						
		排放浓度	ND	ND	ND	ND	40	
		(mg/m ³)						
		排放速率					5.45	
		(kg/h)						
	丙酮 -	实测浓度	ND	ND	ND	ND	/	
		(mg/m ³)						
		排放浓度	ND	ND	ND	ND	40	
		(mg/m ³)						

		排放速率					5.45	
		(kg/h)					5.45	
	异丙醇	实测浓度	ND	ND	ND	ND	/	
		(mg/m ³)		ND	ND			
		排放浓度	ND	ND	ND	ND	40	
		(mg/m ³)						
		排放速率					6.70	
		(kg/h)						
	乙酸	实测浓度	ND	ND	ND	ND	/	
		(mg/m ³)						
		排放浓度	ND	ND	ND	ND	40	
	丁酯	(mg/m^3)						
		排放速率					6.70	
		(kg/h)						
		实测浓度	ND	ND	ND	ND	/	
		(mg/m ³)		ND	ND			
	乙酸	排放浓度	ND	ND	ND	ND	40	
	乙酯	(mg/m ³)	ND	MD	140	ND	40	
		排放速率					6.70	
		(kg/h)	_ -	_ -	- -		0.70	

备注: 1、"ND"表示检测结果小于方法检出限;

- 2、排放速率按规范内插法计算;
- 3、"--"表示该指标排放速率不作计算。

分析评价:本次检测结果表明,该项目 DA004 2#实验室+原料药车间二排放口有组织排放的甲醇、甲苯、硫酸雾排放浓度和排放速率均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 中二级排放标准;非甲烷总烃排放浓度和排放速率符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 3 中医药制造行业排放标准;二氯甲烷、环己烷、正己烷、丙酮、异丙醇、乙酸丁酯、乙酸乙酯排放浓度和排放速率均符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 4 中排放标准;

氨、氯化氢排放浓度均符合《制药工业大气污染物排放标准》(GB 37823-2019)表 2 中化学药品原料药制造、兽用药品原料药制造、生物药品制品制造、医药中间体生产和药物研发机构工艺废气排放标准。

表 6-7DA003 污水处理站+罐区+库房废气排放口检测结果

 采样				排气筒				
日期		检测项目	第一次	第二次	第三次	平均值	标准限值	高度 (m)
	标干流量(m³/h)		8589	8763	8754	8702	/	
	硫化氢	实测浓度(mg/m³)	0.01	0.02	0.01	0.01	/	
		排放浓度(mg/m³)	0.01	0.02	0.01	0.01	5	
		排放速率(kg/h)	8.59×1 0 ⁻⁵	1.75×10 ⁻⁴	8.75×10 ⁻	1.16×10 ⁻	/	
		实测浓度(mg/m³)	0.431	0.510	0.642	0.528	/	
	甲	排放浓度(mg/m³)	0.431	0.510	0.642	0.528	5	
	醛	排放速率(kg/h)	3.70×1 0 ⁻³	4.47×10 ⁻³	5.62×10 ⁻	4.60×10 ⁻	0.2	
2021.05.2	非	实测浓度(mg/m³)	24.3	51.9	52.4	42.9	/	
4	甲	排放浓度(mg/m³)	24.3	51.9	52.4	42.9	60	15
	烷总烃	排放速率(kg/h)	0.209	0.455	0.459	0.374	3.4	
	甲醇	实测浓度(mg/m³)	2.81	4.60	4.66	4.02	/	
		排放浓度(mg/m³)	2.81	4.60	4.66	4.02	190	
		排放速率(kg/h)	0.024	0.040	0.041	0.035	5.1	
	氨	实测浓度(mg/m³)	2.20	1.31	1.45	1.65	/	
		排放浓度(mg/m³)	2.20	1.31	1.45	1.65	20	
		排放速率(kg/h)	0.019	0.011	0.013	0.014	/	
	氯	实测浓度(mg/m³)	1.42	1.37	1.38	1.39	/	

	化	排放浓度(mg/m³)	1.42	1.37	1.38	1.39	30	
	氢	排放速率(kg/h)	0.012	0.012	0.012	0.012	/	
	<u> </u>	实测浓度(mg/m³)	0.007	0.055	0.045	0.036	/	
	氯	排放浓度(mg/m³)	0.007	0.055	0.045	0.036	20	
	甲		6.01×1		3.94×10 ⁻	3.12×10 ⁻		
	烷	排放速率(kg/h)	0-5	4.82×10 ⁻⁴	4	4	1.0	
	甲	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	苯	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	甲苯	排放速率(kg/h)					3.1	
	=	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	甲	排放浓度(mg/m³)	ND	ND	ND	ND	70	
	苯	排放速率(kg/h)					1.0	
	环	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	己	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	烷	排放速率(kg/h)					1.7	
	正	实测浓度(mg/m³)	ND	ND	ND	ND	/	
2021.05.2	己	排放浓度(mg/m³)	ND	ND	ND	ND	40	15
4	烷	排放速率(kg/h)					1.4	15
	壬	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	丙酮	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	凹	排放速率(kg/h)					1.4	
	异	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	丙	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	醇	排放速率(kg/h)					1.7	
	Z	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	酸	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	丁	排放速率(kg/h)					1.7	

	酯							
	Z	实测浓度(mg/m³)	0.343	0.142	0.477	0.321	/	
	酸	排放浓度(mg/m³)	0.343	0.142	0.477	0.321	40	
	乙酯	排放速率(kg/h)	2.95×1 0 ⁻³	1.24×10 ⁻³	4.18×10 ⁻	2.79×10 ⁻	1.7	
		标干流量(m³/h)	8353	8525	8321	8400	/	
	7*k	实测浓度(mg/m³)	0.01	0.01	0.01	0.01	/	
2021.05.2	硫化	排放浓度(mg/m³)	0.01	0.01	0.01	0.01	5	
5	氢	排放速率(kg/h)	8.35×1 0 ⁻⁵	8.53×10 ⁻⁵	8.32×10 ⁻	8.40×10 ⁻	/	
	甲	实测浓度(mg/m³)	0.405	0.326	0.379	0.370	/	
	醛	排放浓度(mg/m³)	0.405	0.326	0.379	0.370	5	
	甲醛	排放速率(kg/h)	3.38×1 0-3	2.78×10 ⁻³	3.15×10 ⁻	3.11×10 ⁻	0.2	
	非	实测浓度(mg/m³)	13.2	33.0	32.6	26.3	/	
	甲	排放浓度(mg/m³)	13.2	33.0	32.6	26.3	60	
	烷总烃	排放速率(kg/h)	0.110	0.281	0.271	0.221	3.4	
	甲	实测浓度(mg/m³)	2.17	2.20	2.22	2.20	/	
2021.05.2	下醇	排放浓度(mg/m³)	2.17	2.20	2.22	2.20	190	15
5	时	排放速率(kg/h)	0.018	0.019	0.018	0.018	5.1	
		实测浓度(mg/m³)	2.14	1.35	1.49	1.66	/	
	氨	排放浓度(mg/m³)	2.14	1.35	1.49	1.66	20	
		排放速率(kg/h)	0.018	0.012	0.012	0.014	/	
	氯	实测浓度(mg/m³)	20.1	11.3	11.4	14.3	/	
	化	排放浓度(mg/m³)	20.1	11.3	11.4	14.3	30	
	氢	排放速率(kg/h)	0.168	0.096	0.094	0.120	/	
_	=	实测浓度(mg/m³)	ND	ND	ND	ND	/	

	氯	排放浓度(mg/m³)	ND	ND	ND	ND	20	
	甲烷	排放速率(kg/h)					1.0	
		实测浓度(mg/m³)	ND	ND	ND	ND	/	
	甲	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	苯	排放速率(kg/h)					3.1	
	=	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	甲	排放浓度(mg/m³)	ND	ND	ND	ND	70	
	苯	排放速率(kg/h)					1.0	
	环	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	己	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	烷	排放速率(kg/h)					1.7	
	正	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	己	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	烷	√11 /0€√√€/ (mg m)		1,2	1,12	1,2		
	正							
	己	排放速率(kg/h)					1.4	
	烷	2.34137.25					,	
	丙	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	酮	排放浓度(mg/m³)	ND	ND	ND	ND	40	
2021.05.2		排放速率(kg/h)					1.4	
5	异	实测浓度(mg/m³)	ND	ND	ND	ND	/	15
	丙	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	醇	排放速率(kg/h)					1.7	
	乙	实测浓度(mg/m³)	ND	ND	ND	ND	/	
	酸	排放浓度(mg/m³)	ND	ND	ND	ND	40	
	丁酯	排放速率(kg/h)					1.7	

乙	实测浓度(mg/m³)	ND	ND	ND	ND	/	
酸	排放浓度(mg/m³)	ND	ND	ND	ND	40	
乙	排分速変(Isa/b)					1.7	
酯	排放速率(kg/h)					1.7	

备注: 1、"ND"表示检测结果小于方法检出限;

2、"--"表示该指标排放速率不作计算。

分析评价:本次检测结果表明,该项目 DA003 污水处理站+罐区+库房排放口有组织排放的甲醇、甲苯、二甲苯排放浓度和排放速率均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 中二级排放标准;非甲烷总烃排放浓度和排放速率符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 3 中医药制造行业排放标准;甲醛、二氯甲烷、环己烷、正己烷、丙酮、异丙醇、乙酸丁酯、乙酸乙酯排放浓度和排放速率均符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 4 中排放标准;氨、氯化氢、硫化氢排放浓度均符合《制药工业大气污染物排放标准》(GB 37823-2019)表 2 中排放标准。

表 6-8 DA003 污水处理站+罐区+库房废气排放口检测结果

采样				检测结果			排气筒
日期	检测项目	第一次	第二次	第三次	最大值	标准限值	高度 (m)
	标干流量(m³/h)	8589	8763	8754	/	/	
2021.05.24	臭气浓度(无量 纲)	549	1737	977	1737	2000	1.5
	标干流量(m³/h)	8353	8525	8321	/	/	15
2021.05.25	臭气浓度(无量 纲)	1318	977	977	1318	2000	

分析评价:本次检测结果表明,该项目 DA003 污水处理站+罐区+库房排放口有组织排放的臭气浓度最大值符合《恶臭污染物排放标准》(GB 14544-1993)表 2 中标准限值。

表 6-9 DA002 锅炉废气排放口检测结果

采样	检测项目	检测结果	排气
----	------	------	----

			第一次	第二次	第三次	平均值	标准限值	
	含	氧量 (%)	4.2	4.0	4.3	4.2	/	
	含	湿量 (%)	5.8	6.1	5.9	5.9	/	
	且	五力(KPa)	0.04	0.10	0.12	0.09	/	
	i	温度(℃)	139.1	129.8	141.5	136.8	/	
	标	干流量(m³/h)	1093	1080	1086	1086	/	
		实测浓度(mg/m³)	3.63	3.99	4.10	3.91	/	
		 排放浓度(mg/m³)	<20	<20	<20	<20	20	
2021.	颗粒物	知が次(mg/m)	(3.78)	(4.11)	(4.30)	(4.06)	20	
05.24		排放速率(kg/h)	3.97×10 ⁻	4.31×10 ⁻	4.45×10 ⁻	4.24×10 ⁻	/	
		实测浓度(mg/m³)	ND	ND	ND	ND	/	
	二氧化一硫	排放浓度(mg/m³)	ND	ND	ND	ND	50	
		排放速率(kg/h)					/	
	与 与 /1.	实测浓度(mg/m³)	83	87	93	88	/	15
	氮氧化	排放浓度(mg/m³)	86	90	98	91	150	
	物	排放速率(kg/h)	0.091	0.094	0.101	0.096	/	
	烟气黑度	(林格曼黑度)(级)		,	≤1			
	含	氧量 (%)	3.9	4.1	4.2	4.1	/	
	含	湿量 (%)	5.7	6.0	6.1	5.9	/	
	归	五力(KPa)	0.01	0.06	0.11	0.06	/	
	i	温度 (℃)	132.6	122.4	141.2	132.1	/	
2021.	标	干流量(m³/h)	1527	1740	1762	1676	/	
05.25		实测浓度(mg/m³)	5.35	5.65	5.01	5.34	/	
	斯 紛 物	排放浓度(mg/m³)		<20 (5.85)	<20 (5.22)	<20 (5.51)	20	
	颗粒物	排放速率(kg/h)	(5.48) 8.17×10 ⁻	9.83×10 ⁻	8.83×10 ⁻	8.94×10 ⁻	/	

一与儿	实测浓度(mg/m³)	ND	ND	ND	ND	/
二氧化硫	排放浓度(mg/m³)	ND	ND	ND	ND	50
191L	排放速率(kg/h)					/
与与心	实测浓度(mg/m³)	88	92	95	92	/
氮氧化 物	排放浓度(mg/m³)	90	95	99	95	150
120	排放速率(kg/h)	0.134	0.160	0.167	0.154	/
烟气黑度	(林格曼黑度)(级)		<	1		≤1

备注: 1、"ND"表示检测结果小于方法检出限;

2、根据《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)修改单的要求,采用本标准检测浓度小于等于 20mg/m³ 时,测定结果表述为<20mg/m³;

3、"--"表示该指标排放速率不作计算。

分析评价:本次检测结果表明,该项目 DA002 锅炉排放口有组织排放的颗粒物、二氧化硫、氮氧化物、烟气黑度(林格曼黑度)的排放浓度均符合《锅炉大气污染物排放标准》(GB 13271-2014)表 3 燃气锅炉排放标准。

	表 6-10 无组织废气检测结果														
				检测结果											
采样日期	采样点位	采样频次	非甲 烷总 烃 (mg	甲醇 (mg/m³)	二氯甲烷 (mg/m³)	乙酸乙酯 (mg/m³)	丙酮 (mg/m³)	氯化氢 (mg/m³)	氨 (mg/m³)	硫化氢 (mg/m³)	颗粒物 (mg/m³)	臭气浓度 (无量 纲)	臭浓最值、量		
		第一次	0.58	1.57	ND	ND	ND	ND	0.02	0.002	0.255	13	纲)		
	1#	第二次	0.58	1.28	ND ND	ND	ND ND	ND ND	0.02	0.002	0.233	11	14		
20	111	第三次	0.63	1.16	ND	ND	ND	ND	0.03	0.002	0.205	14			
21.		第四次	0.62	2.14	ND	ND	ND	ND	0.03	0.001	0.283	12			
05.		第一次	1.13	1.86	ND	ND	ND	ND	0.04	0.005	0.204	11			
20		第二次	1.01	1.33	ND	ND	ND	ND	0.04	0.004	0.256	13	1		
	2#	第三次	0.81	1.64	ND	ND	ND	ND	0.04	0.004	0.205	14	15		
		第四次	1.03	1.38	ND	ND	ND	ND	0.03	0.005	0.232	15			

		第一次	1.40	1.58	ND	ND	ND	ND	0.02	0.002	0.204	13	
	3#	第二次	1.54	1.60	ND	ND	ND	ND	0.02	0.002	0.179	11	1.2
	3#	第三次	1.31	1.53	ND	ND	ND	ND	0.03	0.003	0.230	13	13
		第四次	1.27	1.51	ND	ND	ND	ND	0.02	0.002	0.283	11	
		第一次	0.74	1.16	ND	ND	ND	ND	0.04	0.003	0.306	14	
	4.11	第二次	0.60	1.14	ND	ND	ND	ND	0.04	0.002	0.256	12	1,5
	4#	第三次	0.53	0.50	ND	ND	ND	ND	0.04	0.003	0.205	15	15
		第四次	0.65	1.17	ND	ND	ND	ND	0.04	0.002	0.283	12	
20													
21.	1#	第一	0.47	1.36	ND	ND	ND	ND	0.04	0.002	0.204	11	
05.	1#		0.47	1.30	ND	ND	ND	ND	0.04	0.002	0.204	11	
21													13
		第二次	0.48	0.88	ND	ND	ND	ND	0.02	0.002	0.307	12	
		第三次	0.34	1.14	ND	ND	ND	ND	0.02	0.003	0.232	12	
		第四次	0.38	1.10	ND	ND	ND	ND	0.02	0.002	0.284	13	
	2#	第一次	0.39	1.17	ND	ND	ND	ND	0.03	0.002	0.357	16	16
		第二次	0.41	1.15	ND	ND	ND	ND	0.03	0.002	0.230	12	10

	第三次	0.33	0.97	ND	ND	ND	ND	0.02	0.002	0.258	11	
	第四次	0.63	1.22	ND	ND	ND	ND	0.03	0.002	0.284	13	
3#	第一次	0.46	1.27	ND	ND	ND	ND	0.04	0.001	0.204	14	
	第二次	0.53	1.45	ND	ND	ND	ND	0.04	0.002	0.230	16	1.6
	第三次	0.68	1.10	ND	ND	ND	ND	0.03	0.002	0.206	12	16
	第四次	0.44	1.18	ND	ND	ND	ND	0.05	0.001	0.258	12	
4#	第一次	0.48	1.13	ND	ND	ND	ND	0.04	0.002	0.280	14	
	第二次	0.47	1.14	ND	ND	ND	ND	0.04	0.003	0.205	15	1.5
	第三次	0.34	0.94	ND	ND	ND	ND	0.02	0.003	0.258	11	15
	第四次	0.33	1.10	ND	ND	ND	ND	0.03	0.003	0.232	13	
标												
准 /	2.0	12	0.6	1.0	0.8	0.20	1.5	0.06	1.0	,	20	
限 /	2.0	12	0.6	1.0	0.8	0.20	1.5	0.06	1.0	/	20	
值												

分析评价:本次检测结果表明,该项目无组织排放的非甲烷总烃浓度符合《四川省固定污染源大气挥发性有机物排放标准》 (DB51/2377-2017)表 5 中其他排放标准;二氯甲烷、乙酸乙酯、丙酮浓度符合《四川省固定污染源大气挥发性有机物排放标准》 (DB51/2377-2017)表 6 中排放标准;颗粒物、甲醇浓度符合《大气污染物综合排放标准》(GB 16297-1996)表 2 中无组织排放标准;氯 化氢浓度符合《制药工业大气污染物排放标准》(GB 37823-2019)表 4 中排放标准; 氨、硫化氢、臭气浓度最大值符合《恶臭污染物排放标准》(GB 14544-1993)表 1 中二级新扩改建排放标准。

质量控制统计结果

表 6-11 废水质量控制统计结果

检测项目	样品编号	质控类型	标样 测定 值 (mg/ L)	标样真值 (mg/L)	样品测 定值 (mg/L)	平行测 定值 (mg/L)	相对 偏差 (%)	相对偏 差控制 范围 (%)	加标量	加标回 收率 (%)	加标回 收率控 制范围 (%)	空白测 定值 (mg/L)	空白测 定值控 制范围 (μg/L)
总磷	2021050698-W1	实验室平行	/	/	0.86	0.88	2	±10	/	/	/	/	/
心質	2021050698-W5	实验室平行	/	/	0.93	0.92	0.8	±10	/	/	/	/	/
	/	质控样测定	25.2	26.8±2.2	/	/	/	/	/	/	/	/	/
化学需	/	质控样测定	27.2	26.8±2.2	/	/	/	/	/	/	/	/	/
氧量	2021050698-W1	实验室平行	/	/	46	44	2	±10	/	/	/	/	/
	2021050698-W5	实验室平行	/	/	41	42	-1	±10	/	/	/	/	/
与与	2021050698-W1	实验室平行	/	/	0.548	0.542	0.6	±15	/	/	/	/	/
氨 氮	2021050698-W5	实验室平行	/	/	0.533	0.527	0.6	±115	/	/	/	/	/

- T H J	/	质控样测定	209	210±20	/	/	/	/	/	/	/	/	/
五日生	/	质控样测定	211	210±20	/	/	/	/	/	/	/	/	/
化需氧量	2021050698-W1	实验室平行	/	/	10.3	10.6	-2	±20	/	/	/	/	/
里	2021050698-W5	实验室平行	/	/	11.1	11.5	-2	±20	/	/	/	/	/
 总氮	2021050698-W1	实验室平行	/	/	8.15	8.20	-0.3	±5	/	/	/	/	/
一	2021050698-W8	加标回收	/	/	/	/	/	/	10μg	99	90-110	/	/
总氰化 合物	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
总氰化 合物	2021050698-W5	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
氯化物	2021050698-W1	实验室平行	/	/	327	327	0	±10	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
挥发酚	2021050698-W5	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
硫化物	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
例以化物 	2021050698-W5	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
—————————————————————————————————————	/	质控样测定	1.09	1.09±0.05	/	/	/	/	/	/	/	/	/
刊 	2021050698-W1	实验室平行	/	/	ND	ND	/	±30	/	/	/	/	/

苯胺类	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
辛	/	质控样测定	0.994	0.988±0.04 9	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	±30	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	≤30	/	/	/	/	/
	2021050698-W8	加标回收	/	/	/	/	/	/	125ng	89	60-130	/	/
二氯甲烷	/	试剂空白加 标	/	/	/	/	/	/	125ng	91	80-120	/	/
	/	运输空白	/	/	/	/	/	/	/	/	/	ND	<1.0
	/	全程序空白	/	/	/	/	/	/	/	/	/	ND	<1.0
甲苯	2021050698-W1	实验室平行	/	/	ND	ND	/	€30	/	/	/	/	/
	2021050698-W8	加标回收	/	/	/	/	/	/	125ng	98	60-130	/	/
甲苯	/	试剂空白加 标	/	/	/	/	/	/	125ng	88	80-120	/	/
	/	运输空白	/	/	/	/	/	/	/	/	/	ND	<1.0
	/	全程序空白	/	/	/	/	/	/	/	/	/	ND	<1.0
二溴氟	试剂空白	替代物加标	/	/	/	/	/	/	250ng	108	70-130	/	/

_	1			1	ı							1	
甲烷	全程序空白	替代物加标	/	/	/	/	/	/	250ng	113	70-130	/	/
	运输空白	替代物加标	/	/	/	/	/	/	250ng	112	70-130	/	/
	2021050698-W1	替代物加标	/	/	/	/	/	/	250ng	84	70-130	/	/
	2021050698-W1	++ /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,	,	,	,	,	,	2.50	0.0	5 0.120	,	,
	平行	替代物加标	/	/	/	/	/	/	250ng	89	70-130	/	/
	2021050698-W2	替代物加标	/	/	/	/	/	/	250ng	97	70-130	/	/
	2021050698-W3	替代物加标	/	/	/	/	/	/	250ng	108	70-130	/	/
	2021050698-W4	替代物加标	/	/	/	/	/	/	250ng	107	70-130	/	/
	2021050698-W5	替代物加标	/	/	/	/	/	/	250ng	109	70-130	/	/
	2021050698-W6	替代物加标	/	/	/	/	/	/	250ng	109	70-130	/	/
	2021050698-W7	替代物加标	/	/	/	/	/	/	250ng	117	70-130	/	/
	2021050698-W8	替代物加标	/	/	/	/	/	/	250ng	113	70-130	/	/
	2021050698-W8	* 化 # + + =	/	,	,				250	116	70-130	/	,
	加标	替代物加标	/	/	/	/	/	/	250ng	116	/0-130	/	/
二溴氟	计划公石加与	* 化 加 加 	,	,	,	,		,	250ma	04	70 120	,	,
甲烷	试剂空白加标	替代物加标	/	/	/	/	/	/	250ng	94	70-130	/	/
甲苯	试剂空白	替代物加标	/	/	/	/	/	/	250ng	111	70-130	/	/

-D ₈	全程序空白	替代物加标	/	/	/	/	/	/	250ng	103	70-130	/	/
	运输空白	替代物加标	/	/	/	/	/	/	250ng	118	70-130	/	/
	2021050698-W1	替代物加标	/	/	/	/	/	/	250ng	89	70-130	/	/
	2021050698-W1 平行	替代物加标	/	/	/	/	/	/	250ng	82	70-130	/	/
	2021050698-W2	替代物加标	/	/	/	/	/	/	250ng	87	70-130	/	/
	2021050698-W3	替代物加标	/	/	/	/	/	/	250ng	107	70-130	/	/
	2021050698-W4	替代物加标	/	/	/	/	/	/	250ng	106	70-130	/	/
	2021050698-W5	替代物加标	/	/	/	/	/	/	250ng	111	70-130	/	/
	2021050698-W6	替代物加标	/	/	/	/	/	/	250ng	118	70-130	/	/
	2021050698-W7	替代物加标	/	/	/	/	/	/	250ng	116	70-130	/	/
	2021050698-W8	替代物加标	/	/	/	/	/	/	250ng	126	70-130	/	/
	2021050698-W8 加标	替代物加标	/	/	/	/	/	/	250ng	123	70-130	/	/
	试剂空白加标	替代物加标	/	/	/	/	/	/	250ng	87	70-130	/	/
北 廿 廿	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
硝基苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/

硝基苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	97.5	70-110	/	/
	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
邻-硝基甲苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
甲本	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	86.6	70-110	/	/
	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
对-硝基甲苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
十本 	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	85.0	70-110	/	/
口 水甘	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
间-硝基甲苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
十本	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	99.4	70-110	/	/
间-硝基	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
京-明本 	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	100.8	70-110	/	/
对-硝基	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
X = 帆 基 氯苯	2021050698-W1	实验室平行	/	/	/	ND	ND	€20	/	/	/	/	/
秋本	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	102.0	70-110	/	/
邻-硝基	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/

氯苯													
邻-硝基	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
氯苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	102.8	70-110	/	/
	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
对-二硝基苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
本本 	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	87.3	70-110	/	/
间-二硝	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
N-—年 基苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
本本 	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	74.6	70-110	/	/
<u> </u>	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
邻-二硝基苯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
本本 	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	89.2	70-110	/	/
2,6-=	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
硝基甲	2021050698-W1	实验室平行	/	/	/	ND	ND	€20	/	/	/	/	/
苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	80.6	70-110	/	/
2,4-=	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
硝基甲	2021050698-W1	实验室平行	/	/	/	ND	ND	€20	/	/	/	/	/

苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	71.7	70-110	/	/
2,4-=	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
硝基氯	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	75.3	70-110	/	/
3,4-=	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
硝基甲	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	71.6	70-110	/	/
2,4,6-≡	/	实验室空白	/	/	/	/	/	/	/	/	/	ND	/
硝基甲	2021050698-W1	实验室平行	/	/	/	ND	ND	≤20	/	/	/	/	/
苯	2021050698-W8	加标回收	/	/	/	/	/	/	1.0µg	86.4	70-110	/	/
	实验室空白	替代物加标	/	/	/	/	/	/	2.0μg	89.0	70-110	/	/
	2021050698-W1	替代物加标	/	/	/	/	/	/	2.0µg	106.0	70-110	/	/
74 H 女	2021050698-W1	替代物加标	/	/	/	/	/	/	2.0µg	87.5	70-110	/	/
硝基苯 d5	2021050698-W2	替代物加标	/	/	/	/	/	/	2.0µg	93.0	70-110	/	/
us us	2021050698-W3	替代物加标	/	/	/	/	/	/	2.0μg	92.5	70-110	/	/
	2021050698-W4	替代物加标	/	/	/	/	/	/	2.0µg	85.5	70-110	/	/
	2021050698-W5	替代物加标	/	/	/	/	/	/	2.0µg	102.0	70-110	/	/

	2021050698-W6	替代物加标	/	/	/	/	/	/	2.0µg	97.0	70-110	/	/
	2021050698-W7	替代物加标	/	/	/	/	/	/	2.0µg	98.5	70-110	/	/
硝基苯	2021050698-W8	替代物加标	/	/	/	/	/	/	2.0µg	93.0	70-110	/	/
d5	2021050698-W8 加标	替代物加标	/	/	/	/	/	/	2.0µg	101.5	70-110	/	/
	实验室空白	替代物加标	/	/	/	/	/	/	2.0µg	109.0	70-110	/	/
	2021050698-W1	替代物加标	/	/	/	/	/	/	2.0µg	104.5	70-110	/	/
	2021050698-W1	替代物加标	/	/	/	/	/	/	2.0µg	91.5	70-110	/	/
	2021050698-W2	替代物加标	/	/	/	/	/	/	2.0µg	95.5	70-110	/	/
	2021050698-W3	替代物加标	/	/	/	/	/	/	2.0µg	98.5	70-110	/	/
五氯硝	2021050698-W4	替代物加标	/	/	/	/	/	/	2.0µg	99.0	70-110	/	/
基苯	2021050698-W5	替代物加标	/	/	/	/	/	/	2.0µg	96.0	70-110	/	/
	2021050698-W6	替代物加标	/	/	/	/	/	/	2.0µg	102.0	70-110	/	/
	2021050698-W7	替代物加标	/	/	/	/	/	/	2.0µg	101.5	70-110	/	/
	2021050698-W8	替代物加标	/	/	/	/	/	/	2.0µg	106.0	70-110	/	/
	2021050698-W8 加标	替代物加标	/	/	/	/	/	/	2.0μg	102.5	70-110	/	/

表 6-12 地下水质量控制统计结果

检测项目	样品编号	质控类型	标样测定 值 (mg/L)	标样真 值 (mg/L)	样品测 定值 (mg/ L)	平行测 定值 (mg/L)	相对 偏差 (%)	相对偏 差控制 范围 (%)	加标量	加标回 收率 (%)	加标回 收率控 制范围 (%)	空白测 定值 (mg/L)	空白测 定值控 制范围 (µg/L)
氰化	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
物	2021050698-W2	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
 氨氮	2021050698-W1	实验室平行	/	/	0.082	0.085	-2	±20				/	/
安人炎	2021050698-W2	实验室平行	/	/	0.124	0.127	-1	±15	/	/	/	/	/
挥发	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
性酚 类(以 苯酚 计)	2021050698-W2	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
总磷	2021050698-W1	实验室平行	/	/	0.01	0.01	0	±25	/	/	/	/	/
~ 一	2021050698-W2	实验室平行	/	/	0.01	0.01	0	±25	/	/	/	/	/

硫化	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
物	2021050698-W2	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
铜	/	质控样测定	1.09	1.09±0.0 5	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	±30	/	/	/	/	/
	/	质控样测定	0.0349	34.9±2.9 μg/L	/	/	/	/	/	/	/	/	/
砷	/	质控样测定	0.0334	34.9±2.9 μg/L	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	±20	/	/	/	/	/
	2021050698-W2	实验室平行	/	/	0.0014	0.0014	0	±20	/	/	/	/	/
神	2021050698-W1	加标回收	/	/	/	/	/	/	10.0ng	80	70-130	/	/
押	2021050698-W2	加标回收	/	/	/	/	/	/	10.0ng	108	70-130	/	/
汞	/	质控样测定	0.00331	2.96±1.4 7 μg/L	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	±20	/	/	/	/	/

	2021050698-W2	加标回收	/	/	/	/	/	/	0.5 ng	94	70-130	/	/
氯化	2021050698-W1	实验室平行	/	/	24.7	24.8	-0.2	±10	/	/	/	/	/
物	2021050698-W2	加标回收	/	/	/	/	/	/	0.25mg	107	80-120	/	/
	/	质控样测定	0.154	0.152±0.0 12	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	0.002	0.002	0	±30	/	/	/	/	/
格(六 价)	2021050698-W1	实验室平行	/	/	ND	ND	/	±10	/	/	/	/	/
锌	/	质控样测定	0.994	0.988±0.0 49	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	ND	ND	/	±30	/	/	/	/	/
	/	质控样测定	29.9μg/L	29.1±2 μg/L	/	/	/	/	/	/	/	/	/
	2021050698-W1	实验室平行	/	/	0.0007	0.0007	0	±20	/	/	/	/	/
二氯	2021050698-W1	实验室平行	/	/	ND	ND	/	€30	/	/	/	/	/
甲烷	2021050698-W1	加标回收	/	/	/	/	/	/	125ng	93	60-130	/	/
4. <i>N</i> g	/	试剂空白加	/	/	/	/	/	/	125ng	91	80-120	/	/

		标											
二氯	/	运输空白	/	/	/	/	/	/	/	/	/	ND	<1.0
甲烷	/	全程序空白	/	/	/	/	/	/	/	/	/	ND	<1.0
	2021050698-W1	实验室平行	/	/	ND	ND	/	≤30	/	/	/	/	/
	2021050698-W1	加标回收	/	/	/	/	/	/	125ng	97	60-130	/	/
甲苯	/	试剂空白加 标	/	/	/	/	/	/	125ng	88	80-120	/	/
	/	运输空白	/	/	/	/	/	/	/	/	/	ND	<1.4
	/	全程序空白	/	/	/	/	/	/	/	/	/	ND	<1.4
	试剂空白	替代物加标	/	/	/	/	/	/	250ng	108	70-130	/	/
	全程序空白	替代物加标	/	/	/	/	/	/	250ng	113	70-130	/	/
二溴	运输空白	替代物加标	/	/	/	/	/	/	250ng	112	70-130	/	/
— 决 氟甲	2021050698-W1	替代物加标	/	/	/	/	/	/	250ng	102	70-130	/	/
烷	2021050698-W1 平行	替代物加标	/	/	/	/	/	/	250ng	118	70-130	/	/
	2021050698-W1 加标	替代物加标	/	/	/	/	/	/	250ng	100	70-130	/	/

	2021050698-W2	替代物加标	/	/	/	/	/	/	250ng	111	70-130	/	/
	试剂空白加标	替代物加标	/	/	/	/	/	/	250ng	94	70-130	/	/
甲苯	试剂空白	替代物加标	/	/	/	/	/	/	250ng	111	70-130	/	/
-D ₈	全程序空白	替代物加标	/	/	/	/	/	/	250ng	103	70-130	/	/
	运输空白	替代物加标	/	/	/	/	/	/	250ng	118	70-130	/	/
	2021050698-W1	替代物加标	/	/	/	/	/	/	250ng	113	70-130	/	/
甲苯	2021050698-W1 平行	替代物加标	/	/	/	/	/	/	250ng	95	70-130	/	/
-D ₈	2021050698-W1 加标	替代物加标	/	/	/	/	/	/	250ng	110	70-130	/	/
	2021050698-W2	替代物加标	/	/	/	/	/	/	250ng	101	70-130	/	/
	试剂空白加标	替代物加标	/	/	/	/	/	/	250ng	87	70-130	/	/

表 6-13 土壤质量控制统计结果

检测项目	样品编号	质控类型	标样 测定值 (mg/kg)	标样真值 (mg/kg)	样品 测定值 (mg/kg)	平行 测定值 (mg/kg)	相对 偏差 (%)	相 編 控 范 (%)	加标 量 (ng)	加标 回收 率 (%)	加标回 收率控 制范围 (%)	空白测 定值 (mg/kg)	空 白 测 定 值 控 制 范 围 (g/kg)
	/	全程序空白	/	/	/	/	/	/	/	/	/	ND	<1.5
二氯甲烷	/	运输空白	/	/	/	/	/	/	/	/	/	ND	<1.5
	2021050698-S1	加标回收	/	/	/	/	/	/	125	111	70-130	/	/
	/	全程序空白	/	/	/	/	/	/	/	/	/	ND	<1.3
甲苯	/	运输空白	/	/	/	/	/	/	/	/	/	ND	<1.3
	2021050698-S1	加标回收	/	/	/	/	/	/	125	106	70-130	/	/
	全程序空白	替代物加标	/	/	/	/	/	/	125	105	70-130	/	/
	运输空白	替代物加标	/	/	/	/	/	/	125	97	70-130	/	/
二溴氟甲	2021050698-S1	替代物加标	/	/	/	/	/	/	125	89	70-130	/	/
烷	2021050698-S2	替代物加标	/	/	/	/	/	/	125	98	70-130	/	/
	2021050698-S3	替代物加标	/	/	/	/	/	/	125	96	70-130	/	/
	2021050698-S3	替代物加标	/	/	/	/	/	/	125	95	70-130	/	/

	加标												
	全程序空白	替代物加标	/	/	/	/	/	/	125	103	70-130	/	/
甲苯 -D 8	运输空白	替代物加标	/	/	/	/	/	/	125	102	70-130	/	/
⊤ 本-D8	2021050698-S1	替代物加标	/	/	/	/	/	/	125	101	70-130	/	/
	2021050698-S2	替代物加标	/	/	/	/	/	/	125	103	70-130	/	/
	2021050698-S3	替代物加标	/	/	/	/	/	/	125	101	70-130	/	/
甲苯-D ₈	2021050698-S3 加标	替代物加标	/	/	/	/	/	/	125	97	70-130	/	/
	全程序空白	替代物加标	/	/	/	/	/	/	125	109	70-130	/	/
	运输空白	替代物加标	/	/	/	/	/	/	125	105	70-130	/	/
	2021050698-S1	替代物加标	/	/	/	/	/	/	125	84	70-130	/	/
4-溴氟苯	2021050698-S2	替代物加标	/	/	/	/	/	/	125	95	70-130	/	/
	2021050698-S3	替代物加标	/	/	/	/	/	/	125	84	70-130	/	/
	2021050698-S3 加标	替代物加标	/	/	/	/	/	/	125	94	70-130	/	/

表七 环境管理检查结果

一、环保管理制度

- 1、环境管理制度:四川青木制药有限公司制定了《四川青木制药有限公司环境保护管理制度》,将环保工作纳入公司日常管理服务工作中,对环保设施建立了定期检查、维护制度,保证环保设施正常运行。
- 2、环保档案管理情况:四川青木制药有限公司实验室及环保设施技改项目环保档案及环保资料交由办公室统一管理,建立了污染源档案。

二、固体废弃物处置情况检查

项目营运期间产生的固体废弃物有一般废物和危险废物。

- (1) 一般固废
- 一般固废主要为生活垃圾、纯水制备系统废吸附载体物,均由环卫部门清运。

(2) 危险废物

项目产生废物中属名录中的危险废物有实验工艺固废、质检室废液、废试剂、废气处理装置废吸收剂、废吸附剂活性炭、空气净化系统废滤材、废包装材料、报废药品、废机油和废含油抹布,暂存于危废暂存间,定期交由四川省兴茂石化有限责任公司、江油诺客环保科技有限公司和四川欣欣环保科技有限公司统一处置。本项目营运期产生的固废主要有:实验工艺固废、质检室废液及废试剂、废气处理装置废吸附剂、废吸附剂活性炭、空气净化系统废滤材、报废药品、废包装材料、纯水制备系统废吸附载体物、废机油和废含油抹布、污水处理站污泥、办公生活垃圾。

(3)目前污水处理站污泥暂未清掏,待清掏后业主单位按照环评及批复要求,暂按照危险废物进行管理,将污泥送有资质的检测部门严格按照《危险废物鉴别技术规范》和《危险废物鉴别标准》进行检测鉴别,明确其性质。如为危废,则按规定送有资质的危废单位处置;如为一般固废,交由环卫部门送城市垃圾填埋场处理。

三、总量控制指标

表 7-1 总量对照表

1番日	环评本项目建议总量	环评全厂建议总量	本项目实际排放	全厂实际排放总
项目 			总量	量
COD	1.195t/a	22. 7049t/a	0.2078t/a	/
NH3-N	0.1148t/a	2.0434t/a	0.0026t/a	/

VOCs	0.75024t/a	11.5859t/a	/	5.907844t/a
二氧化硫	/	0.1145t/a	/	/
氮氧化物	/	1.9024t/a	/	1.25664t/a

废水总量=废水日排量×年排水时间×浓度×10⁻⁶

废气总量=废气排放速率×日排放时间×年排放天数×10⁻³

注:本项目年排水量 4947.64t,废气年排放时间青木制药有限公司工作制度采用三班制,每班 8 小时,24 小时连续生产,年平均有效工作日 340 天。

四、公众意见调查

为了了解企业所在区域范围内公众对企业的态度,根据《建设项目环境保护管理条例》第十五条之规定,我公司在验收检测期间对项目所在区域进行了公众参与调查工作,调查将以问卷统计形式进行,发放问卷 30 份,收回 30 份,回收率 100%,调查有效,问卷调查统计见表 7-2,被调查人员信息及具体调查问卷见附件。

表7-2 问券调查统计结果表

调查内容	支持	反对		有正影响	有负影响	有负影 响可承 受	有负影 响不可 承受	无 影 响	满意	较满 意	无影响
建设态度	16	/	12	/	/	/	/	/	/	/	/
比例%	53.3	/	46. 6	/	/	/	/		/	/	/
生活影响	/	/	/	4	/	/	/	26	/	/	/
比例%	/	/	/	13. 3 3	/	/	/	86. 6 7	/	/	/
学习影响	/	/	/	4	/	/	/	26	/	/	/
比例%	/	/	/	13. 3 3	/	/	/	86. 6 7		/	/
工作影	/	/	/	5	/	/	/	25	/	/	/

响											
HH											
比例%	/	/	/	16. 6 7	/	/	/	83. 3	/	/	/
娱乐影响	/	/	/	4	/	/	/	26	/	/	/
比例%	/		/	13.3	/	/	/	86. 6 7	/	/	/
生活质量影响	/	/	/	3	/	/	/	27	/	/	/
比例%	/	/	/	10	/	/	/	90	/	/	/
社会经济影响	/	/	/	5	/	/	/	25	/	/	/
比例%	/	/	/	16. 6 7	/	/	/	83. 3	/	/	/
自然生 态环境 影响	/	/	/	3	/	/	/	27	/	/	/
比例%	/	/	/	10	/	/	/	90	/	/	/
环保工 作满意 程度	/	/	/	/	/	/	/	/	26	4	/
比例%	/	/	/	/	/	/	/	/	86. 6 7	13. 3	/

通过调查结果表可知: 53.33%的受访者表示对该项目的支持,46.67%的受访者表示不关心;13.33%表示对生活有正影响,86.67%的受访者表示对生活无影响;13.3%表示对学习有正影响,86.7%的受访者表示对学习无影响;16.67%表示对工作有正影响,83.33%的受访者表示对工作无影响;13.33%表示对娱乐有正影响,86.67%的受访者表示项目对娱乐无影响;10%的受访者表示对生活质量有正影响,90%的受访者表示无影响;16.67%表示对社会经济有正影响,83.33%的受访者表示对社会经济无

影响;90%的受访者表示项目对自然、生态环境无影响;86.67%的受访者对该项目环保工作表示满意,13.33%的受访者表示较满意。

四、环评批复落实要求检查

表 7-4 环评批复与落实情况对照表

环保批复要求	落实情况
严格按照报告表要求落实各项环保设施的建设,加强环保设施的日	
常管理和维护,确保环保设施正常运转及各类污染物稳定达标排放,	一致
杜绝事故排放。	
落实并优化报告表提出的废气治理措施,确保大气污染物达标排放。	
实验车间有机废气依托"碱水喷淋塔+石蜡油吸收塔"处理后,并入	
车间跑冒滴漏废气处理装置(即碱水喷淋塔+石蜡油吸收塔+活性炭	
吸附塔)处理后,由25米高排气筒排放。按照报告表要求,以以实验	
 车间、现有储罐区、新建甲类库房、新建污水处理站边界起向外划	一致
定 100 米卫生防护距离,目前该范围内无环境敏感点,卫生防护距	
离内今后不宜引入居民区、学校、医院等环境敏感点等对大气环境	
要求较高的项目。	
落实并优化报告表提出的废水处理措施,确保地表水环境安全。生	
产废水和生活污水一起排入厂区污水处理站达《化学合成类制药工	
业水污染物排放标准》及园区污水处理厂纳管标准,再管网排入园	一致
区污水处理厂处理后排放。	
严格按照报告表要求,落实并优化固体废物污染防治措施,按照"减	
量化、资源化、无害化"的原则,对固体废物进.行分类收集和处置,	
危险废物交由有危废资质的单位处置,避免造成二次污染,确保环	一致
境安全。	
按报告表要求,选用低噪设备,采取厂房隔声、设备减振等可靠的	T.L.
防噪措施,确保厂界噪声达标排放。	一致
严格落实各类环境风险防范措施,按环评要求成立机构,健全组织,	T.L.
确定岗位分工,确保不发生环境污染事故。	一致

表八 结论与建议

一、结论

本次针对四川青木制药有限公司实验室及环保设施技改项目项目环保基础设施 的调查及监测,对照有关管理部门批复文件及相关技术标准,作如下结论:

1、废气

项目运营期间废气主要来源于实验车间工艺废气、车间跑冒滴废气、储罐区大小呼吸废气、甲类库房废气、污水处理站废气恶臭和天然气燃烧废气。

工艺废气依托现有 1 套碱水喷淋塔+石蜡油吸收塔处理后,并入车间跑冒滴漏废气处理装置(即 1 套碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔+25m 高排气筒 DA004)处置。车间跑冒滴漏废气依托现有 1 套碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔+25m 高排气筒 DA004 处理后排放;罐区、甲类库房、污水处理站废气依托现有 1 套碱水喷淋塔+石蜡油吸收塔+活性炭吸附塔+15m 高排气筒 DA003 排放;燃气锅炉天然气燃烧废气经现有 1 根 15m 排气筒(DA002)排放。

验收监测期间:本次检测结果表明,该项目 DA004 2#实验室+原料药车间二排放口有组织排放的甲醇、甲苯、硫酸雾排放浓度和排放速率均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 中二级排放标准;非甲烷总烃排放浓度和排放速率符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 3 中医药制造行业排放标准;二氯甲烷、环己烷、正己烷、丙酮、异丙醇、乙酸丁酯、乙酸乙酯排放浓度和排放速率均符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 4 中排放标准;氨、氯化氢排放浓度均符合《制药工业大气污染物排放标准》(GB 37823-2019)表 2 中化学药品原料药制造、兽用药品原料药制造、生物药品制品制造、医药中间体生产和药物研发机构工艺废气排放标准。

该项目 DA003 污水处理站+罐区+库房排放口有组织排放的甲醇、甲苯、二甲苯排放浓度和排放速率均符合《大气污染物综合排放标准》(GB 16297-1996)表 2中二级排放标准;非甲烷总烃排放浓度和排放速率符合《四川省固定污染源大气挥

发性有机物排放标准》(DB51/2377-2017)表 3 中医药制造行业排放标准;甲醛、二氯甲烷、环己烷、正己烷、丙酮、异丙醇、乙酸丁酯、乙酸乙酯排放浓度和排放速率均符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表 4 中排放标准;氨、氯化氢、硫化氢排放浓度均符合《制药工业大气污染物排放标准》(GB 37823-2019)表 2 中排放标准。

该项目 DA00 锅炉排放口有组织排放的颗粒物、二氧化硫、氮氧化物、烟气黑度(林格曼黑度)的排放浓度均符合《锅炉大气污染物排放标准》(GB 13271-2014)表 3 燃气锅炉排放标准。

本次检测结果表明,该项目无组织排放的非甲烷总烃浓度符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表5中其他排放标准;二氯甲烷、乙酸乙酯、丙酮浓度符合《四川省固定污染源大气挥发性有机物排放标准》(DB51/2377-2017)表6中排放标准;颗粒物、甲醇浓度符合《大气污染物综合排放标准》(GB 16297-1996)表2中无组织排放标准;氯化氢浓度符合《制药工业大气污染物排放标准》(GB 37823-2019)表4中排放标准;氨、硫化氢、臭气浓度最大值符合《恶臭污染物排放标准》(GB 14544-1993)表1中二级新扩改建排放标准。

2、废水

本项目废水主要来源于原料药实验工艺废水、喷淋塔废水、设备清洗废水、真空设备废水、质检分析废水、车间冲洗废水、生活污水以及初期雨水等。

本项目废水采取"高、低浓度废水分类处理"方式,高浓度废水主要来源于原料药实验工艺废水;低浓废水主要为喷淋塔废水、设备清洗废水、真空设备废水、质检分析废水、车间冲洗废水、生活污水以及初期雨水等。高浓度废水先经厂区污水处理站预处理(多维电解或芬顿)工艺处理后,再汇同低浓度废水及预处理后的员工生活污水等一并进入污水处理站综合废水调节池,采用"气浮+水解酸化+厌氧处理+CASS工艺"或"气浮+水解酸化池+UASB+A/0+混凝沉淀"工艺处理达标后,排入园区污水处理厂进一步处理,达到《四川省岷江、沱江流域水污染执行标准》(DB51/2311-2016)中"工业园区集中式污水处理厂"标准后,最终排放岷江。

验收监测期间:本次检测结果表明,该项目废水总排口污染因子: pH、悬浮物、 五日生化需氧量、化学需氧量、石油类、动植物油、挥发酚、总氰化合物、硫化物、 苯胺类、硝基苯类、总铜、总锌、甲苯均符合《污水综合排放标准》(GB 8978-1996) 表 4 中三级排放标准; 色度、总氮(以 N 计)、氨氮(以 N 计)、总磷(以 P 计)、 氯化物参照《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 中 B 级排 放标准; 急性毒性(HgCl₂毒性当量)、二氯甲烷均符合《化学合成类制药工业水污染物排放标准》(GB 21904-2008)表 2 中排放标准。

3、噪声

项目营运期噪声主要来源于引风机、空压机及其它设备噪声等。

本项目噪声采用低噪声设备,采取台基减振和减震垫、合理安排生产时间、墙体隔声等措施降噪。

验收监测期间:本项目所测 4 个点位的昼间工业企业厂界噪声均符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)表 1 中 3 类功能区排放标准。

4、固体废物

本项目营运期产生的固废主要有:实验工艺固废、质检室废液及废试剂、废气处理装置废吸附剂、废吸附剂活性炭、空气净化系统废滤材、报废药品、废包装材料、纯水制备系统废吸附载体物、废机油和废含油抹布、污水处理站污泥、办公生活垃圾。

项目产生废物中属名录中的危险废物有实验工艺固废、质检室废液、废试剂、废气处理装置废吸收剂、废吸附剂活性炭、空气净化系统废滤材、废包装材料、报 废药品、废机油和废含油抹布,业主均委托有危废处理资质的单位统一处置。

一般固废主要为生活垃圾、纯水制备系统废吸附载体物,均由环卫部门清运。 目前污水处理站污泥暂未清掏,待清掏后业主单位按照环评及批复要求进行处 置。

除此之外,本次检测结果表明,该项目厂区内监测井所测检测因子均符合《地下水质量标准》(GB/T 14848-2017)表 1 和表 2 中III类标准; 厂区东北侧 92 米处农户水井所测检测因子除菌落总数外均符合《地下水质量标准》(GB/T 14848-2017)表 1 和表 2 中III类标准。该项目所测 3 个点位土壤污染因子: 二氯甲烷、甲苯均符合《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)表 1 中筛选值第二类用地。

综上所述,项目废水、废气和噪声排放满足环保相关标准要求,对环境影响

较小。项目所有固体废物均得到妥善处置,不会造成二次污染,对环境影响较小。 运营期间该项目基本执行了各项环境保护规章制度,污染防治措施和生态保护措施 可行。环保管理制度健全,建设及运行期间环保档案资料齐全。建议通过验收。

二、建议

- 1. 严格在岗人员操作管理,操作人员须通过培训和定期考核,方可上岗。
- 2. 加强危废管理制度,做好危废台账记录。
- 3. 加强对设备的管理,确保设备运行正常。

建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章): 四川九诚检测技术有限公司 填表人(签字):

项目经办人(签字):

	/	/	~ I—	W17/1-11/K2	· • /	, , •	<u> </u>										
	项目名称		四川	青木	制药有限公司实验	佥室及环保设	施技改	女项目		建设地点	Ē	眉山市东坡区眉山市经济开发区东区顺江大道南段 55 号					
	建设单位				四川青木制刻	 有限公司				邮编		620	000	联系	电话	151082	270885
	行业类别		医学研究	己和	建设性质	新建□扩建☑技改□				建设项目开口	口日期	/		投入试运行日 期		/	
	设计生产能力				年实验的原料药	5共计 1.11t/a				实际生产能			年实验的	J原料药共	原料药共计 1.11t/a		
建设	投资总概算(万元)	800 环化		环仍	R投资总概算(万 元)	620		所占比例%		77.5		环保设施设计单位			/		
项目	实际总投资(万元)	800 实际		实际	环保投资(万元)	620		所占比例%		77.5		环保设施	施工单位		/		
	环评审批部门	眉山市东坡生态环境 局		批准文号	眉东环建 [2020]45		批	准日期	2020年7月1日		环评单位		四川嘉	四川嘉盛裕环保技术		「限公司	
	初步设计审批部门	/			批准文号	/		批准日期		/		环保设施监测单位			/		
	环保验收审批部门	/			批准文号	/		批	准日期	/	/		~		/		
	废水治理(万元)	500 废气治理 (万元)			4	噪声治理(7	(万元) 3		固废治	台理(万元) 50		绿化及生态(万元)		/	其它(5元)	63
	新增废水处理设施能力					新增废气处	能力		/		年平均工作时		†		300d		
污染物	污染物	原有排 放量 (1)	放量 际排放浓度		本期工程允许排 放浓度(3)	本期工程产 生量(4)	本期日		本期工程 实际排放 量(6)	本期工程核定量(7)	定排放	本期工程 "以新带老" 削减量(8)	全厂实际 排放总量 (9)			- 排放	文增减量 (12)
排放达	क्षेट्र और																
标与总					42				0. 2078	1. 195				22. 7049			
量控制	氨氮				0. 540				0.1148	0.0026				2.0434			
(工业	废气																
建设项	VOCs												5. 907844	11. 5859			
目详	二氧化硫												/	0.1145			
填)	氮氧化物												1. 25664	1. 9024			
	与项目有关的其 它特征污染物																

注: 1、排放增减量: (+)表示增加, (-)表示减少。2、(12) = (6) - (8) - (11), (9) = (4) - (5) - (8) - (11) + (1)。3、计量单位:废水排放量——万吨/年;废气排放量——万标立方米/年;工业固体废物排放量——万吨/年;水污染物排放浓度——毫克/升;大气污染物排放浓度——毫克/立方米;水污染物排放量——吨/年;大气污染物排放量——吨/年